Department of Computer Science, School of Engineering, University of California, Davis, CA 95616, USA.
Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, CA 95616, USA.
Sensors (Basel). 2024 Feb 8;24(4):1123. doi: 10.3390/s24041123.
Differences in gait patterns of children with Duchenne muscular dystrophy (DMD) and typically developing (TD) peers are visible to the eye, but quantifications of those differences outside of the gait laboratory have been elusive. In this work, we measured vertical, mediolateral, and anteroposterior acceleration using a waist-worn iPhone accelerometer during ambulation across a typical range of velocities. Fifteen TD and fifteen DMD children from 3 to 16 years of age underwent eight walking/running activities, including five 25 m walk/run speed-calibration tests at a slow walk to running speeds (SC-L1 to SC-L5), a 6-min walk test (6MWT), a 100 m fast walk/jog/run (100MRW), and a free walk (FW). For clinical anchoring purposes, participants completed a Northstar Ambulatory Assessment (NSAA). We extracted temporospatial gait clinical features (CFs) and applied multiple machine learning (ML) approaches to differentiate between DMD and TD children using extracted temporospatial gait CFs and raw data. Extracted temporospatial gait CFs showed reduced step length and a greater mediolateral component of total power (TP) consistent with shorter strides and Trendelenberg-like gait commonly observed in DMD. ML approaches using temporospatial gait CFs and raw data varied in effectiveness at differentiating between DMD and TD controls at different speeds, with an accuracy of up to 100%. We demonstrate that by using ML with accelerometer data from a consumer-grade smartphone, we can capture DMD-associated gait characteristics in toddlers to teens.
患有杜氏肌营养不良症 (DMD) 的儿童与典型发育 (TD) 同龄人之间的步态模式差异肉眼可见,但在步态实验室之外对这些差异进行量化一直难以捉摸。在这项工作中,我们使用佩戴在腰部的 iPhone 加速度计测量了垂直、横向和前后向加速度,测量范围包括典型的速度范围。15 名 3 至 16 岁的 TD 和 15 名 DMD 儿童进行了 8 项步行/跑步活动,包括 5 项 25 米步行/跑步速度校准测试(从慢走到跑步速度 SC-L1 到 SC-L5)、6 分钟步行测试 (6MWT)、100 米快速步行/慢跑/跑步 (100MRW) 和自由步行 (FW)。为了临床锚定的目的,参与者完成了 Northstar 动态评估 (NSAA)。我们提取了时空步态临床特征 (CFs),并应用多种机器学习 (ML) 方法,使用提取的时空步态 CFs 和原始数据来区分 DMD 和 TD 儿童。提取的时空步态 CFs 显示步长减小,总功率 (TP) 的横向分量更大,与 DMD 中常见的短步幅和 Trendelenberg 样步态一致。使用时空步态 CFs 和原始数据的 ML 方法在区分不同速度下的 DMD 和 TD 对照组方面的有效性各不相同,准确率高达 100%。我们证明,通过使用 ML 处理来自消费级智能手机的加速度计数据,我们可以捕捉到幼儿到青少年时期与 DMD 相关的步态特征。