Suppr超能文献

一种基于数据挖掘的预测通气泵衰竭肺活量平台值的机器学习方法。

A Machine-Learning Method of Predicting Vital Capacity Plateau Value for Ventilatory Pump Failure Based on Data Mining.

作者信息

Chang Wenbing, Ji Xinpeng, Wang Liping, Liu Houxiang, Zhang Yue, Chen Bang, Zhou Shenghan

机构信息

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.

Department of Neurology, Peking University Third Hospital, Beijing 100191, China.

出版信息

Healthcare (Basel). 2021 Sep 30;9(10):1306. doi: 10.3390/healthcare9101306.

Abstract

Ventilatory pump failure is a common cause of death for patients with neuromuscular diseases. The vital capacity plateau value (VCPLAT) is an important indicator to judge the status of ventilatory pump failure for patients with congenital myopathy, Duchenne muscular dystrophy and spinal muscular atrophy. Due to the complex relationship between VCPLAT and the patient's own condition, it is difficult to predict the VCPLAT for pediatric disease from a medical perspective. We established a VCPLAT prediction model based on data mining and machine learning. We first performed the correlation analysis and recursive feature elimination with cross-validation (RFECV) to provide high-quality feature combinations. Based on this, the Light Gradient Boosting Machine (LightGBM) algorithm was to establish a prediction model with powerful performance. Finally, we verified the validity and superiority of the proposed method via comparison with other prediction models in similar works. After 10-fold cross-validation, the proposed prediction method had the best performance and its explained variance score (EVS), mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), median absolute error (MedAE) and R were 0.949, 0.028, 0.002, 0.045, 0.015 and 0.948, respectively. It also performed well on test datasets. Therefore, it can accurately and effectively predict the VCPLAT, thereby determining the severity of the condition to provide auxiliary decision-making for doctors in clinical diagnosis and treatment.

摘要

通气泵衰竭是神经肌肉疾病患者常见的死亡原因。肺活量平台值(VCPLAT)是判断先天性肌病、杜氏肌营养不良症和脊髓性肌萎缩症患者通气泵衰竭状态的重要指标。由于VCPLAT与患者自身状况之间的关系复杂,从医学角度很难预测儿科疾病的VCPLAT。我们基于数据挖掘和机器学习建立了一个VCPLAT预测模型。我们首先进行了相关性分析和带交叉验证的递归特征消除(RFECV),以提供高质量的特征组合。在此基础上,采用轻量级梯度提升机(LightGBM)算法建立了性能强大的预测模型。最后,通过与类似工作中的其他预测模型进行比较,验证了所提方法的有效性和优越性。经过10折交叉验证,所提预测方法性能最佳,其解释方差得分(EVS)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、中位数绝对误差(MedAE)和R分别为0.949、0.028、0.002、0.045、0.015和0.948。它在测试数据集上也表现良好。因此,它可以准确有效地预测VCPLAT,从而确定病情严重程度,为医生临床诊断和治疗提供辅助决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ca7/8544367/f4ec9f3af4db/healthcare-09-01306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验