Suppr超能文献

基于改进麻雀搜索算法的门控循环单元神经网络用于北斗三号卫星钟差预报

Improved SSA-Based GRU Neural Network for BDS-3 Satellite Clock Bias Forecasting.

作者信息

Liu Hongjie, Liu Feng, Kong Yao, Yang Chaozhong

机构信息

College of Computer Science, Xi'an Polytechnic University, Xi'an 710600, China.

College of Electronics and Information, Xi'an Polytechnic University, Xi'an 710600, China.

出版信息

Sensors (Basel). 2024 Feb 11;24(4):1178. doi: 10.3390/s24041178.

Abstract

Satellite clock error is a key factor affecting the positioning accuracy of a global navigation satellite system (GNSS). In this paper, we use a gated recurrent unit (GRU) neural network to construct a satellite clock bias forecasting model for the BDS-3 navigation system. In order to further improve the prediction accuracy and stability of the GRU, this paper proposes a satellite clock bias forecasting model, termed ITSSA-GRU, which combines the improved sparrow search algorithm (SSA) and the GRU, avoiding the problems of GRU's sensitivity to hyperparameters and its tendency to fall into local optimal solutions. The model improves the initialization population phase of the SSA by introducing iterative chaotic mapping and adopts an iterative update strategy based on t-step optimization to enhance the optimization ability of the SSA. Five models, namely, ITSSA-GRU, SSA-GRU, GRU, LSTM, and GM(1,1), are used to forecast the satellite clock bias data in three different types of orbits of the BDS-3 system: MEO, IGSO, and GEO. The experimental results show that, as compared with the other four models, the ITSSA-GRU model has a stronger generalization ability and forecasting effect in the clock bias forecasting of all three types of satellites. Therefore, the ITSSA-GRU model can provide a new means of improving the accuracy of navigation satellite clock bias forecasting to meet the needs of high-precision positioning.

摘要

卫星钟差是影响全球导航卫星系统(GNSS)定位精度的关键因素。本文利用门控循环单元(GRU)神经网络构建了北斗三号导航系统的卫星钟差预测模型。为进一步提高GRU的预测精度和稳定性,本文提出了一种卫星钟差预测模型ITSSA-GRU,该模型将改进的麻雀搜索算法(SSA)与GRU相结合,避免了GRU对超参数敏感以及易陷入局部最优解的问题。该模型通过引入迭代混沌映射改进了SSA的初始种群阶段,并采用基于t步优化的迭代更新策略增强了SSA的优化能力。利用ITSSA-GRU、SSA-GRU、GRU、LSTM和GM(1,1)五种模型对北斗三号系统中中圆地球轨道(MEO)、倾斜地球同步轨道(IGSO)和地球静止轨道(GEO)三种不同类型轨道的卫星钟差数据进行预测。实验结果表明,与其他四种模型相比,ITSSA-GRU模型在三种类型卫星的钟差预测中具有更强的泛化能力和预测效果。因此,ITSSA-GRU模型可为提高导航卫星钟差预测精度提供一种新手段,以满足高精度定位的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb01/10892059/13fbc26f7bbb/sensors-24-01178-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验