Suppr超能文献

基于周期项的不同机器学习方法在GPS卫星钟差预测中的比较研究

A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias.

作者信息

Song Longjiang, Liu Jiahao, Wang Leilei, Wang Ziyi, Yuan Yibo

机构信息

College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.

Space Star Technology Co., Ltd, Beijing, 100086, China.

出版信息

Sci Rep. 2025 Jan 21;15(1):2709. doi: 10.1038/s41598-025-87328-6.

Abstract

Accurately predicting satellite clock deviation is crucial for improving real-time location accuracy in a GPS navigation system. Therefore, to ensure high levels of real-time positioning accuracy, it is essential to address the challenge of enhancing satellite clock deviation prediction when high-precision clock data is unavailable. Given the high frequency, sensitivity, and variability of space-borne GPS satellite atomic clocks, it is important to consider the periodic variations of satellite clock bias (SCB) in addition to the inherent properties of GPS satellite clocks such as frequency deviation, frequency drift, and frequency drift rate to improve SCB prediction accuracy and gain a better understanding of its characteristics. In recent applications, deep learning models have significantly improved handling time-series data. This paper presents four machine learning prediction models that take into consideration periodic variations. Specifically, we utilize precision satellite clock bias data from the International GNSS Service forecast experiments and assess the predictive effects of various models including backpropagation neural network (BPNN), wavelet neural network (WNN), long short-term memory (LSTM), and gated recurrent units (GRUs). The predicted sequences of the four machine learning models are compared with the quadratic polynomial(QP) model. The average prediction accuracy of forecasting has improved by approximately (39.45, 57.57, 27.28, 29.14)% during 1-day forecasting. The results indicate that the machine learning models incorporating periodic variations outperform the standard quadratic polynomial model in terms of predictive accuracy, and the WNN model is better than that of these three machine learning models. This highlights the promising potential of deep learning models in forecasting satellite clock bias.

摘要

准确预测卫星钟差对于提高GPS导航系统的实时定位精度至关重要。因此,为确保高水平的实时定位精度,在高精度时钟数据不可用时应对增强卫星钟差预测这一挑战至关重要。鉴于星载GPS卫星原子钟的高频率、高灵敏度和高变异性,除了考虑GPS卫星钟的频率偏差、频率漂移和频率漂移率等固有特性外,还需考虑卫星钟偏(SCB)的周期性变化,以提高SCB预测精度并更好地了解其特性。在最近的应用中,深度学习模型显著改善了对时间序列数据的处理。本文提出了四种考虑周期性变化的机器学习预测模型。具体而言,我们利用国际全球导航卫星系统服务(International GNSS Service)预报实验中的精密卫星钟偏数据,评估包括反向传播神经网络(BPNN)、小波神经网络(WNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)在内的各种模型的预测效果。将这四种机器学习模型的预测序列与二次多项式(QP)模型进行比较。在1天的预测中,预测的平均准确率提高了约(39.45、57.57、27.28、29.14)%。结果表明,纳入周期性变化的机器学习模型在预测精度方面优于标准二次多项式模型,且WNN模型优于这三种机器学习模型。这突出了深度学习模型在预测卫星钟偏方面的广阔潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b99/11751317/302f7c741d9e/41598_2025_87328_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验