Suppr超能文献

南极海栖玛琳球菌家族 1 糖苷水解酶(GH1)的冷活性和葡萄糖耐受性的结构决定因素

Structural determinants of cold activity and glucose tolerance of a family 1 glycoside hydrolase (GH1) from Antarctic Marinomonas sp. ef1.

机构信息

Department of Biosciences, University of Milano, Italy.

Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy.

出版信息

FEBS J. 2024 Jul;291(13):2897-2917. doi: 10.1111/febs.17096. Epub 2024 Feb 23.

Abstract

Cold-active enzymes support life at low temperatures due to their ability to maintain high activity in the cold and can be useful in several biotechnological applications. Although information on the mechanisms of enzyme cold adaptation is still too limited to devise general rules, it appears that very diverse structural and functional changes are exploited in different protein families and within the same family. In this context, we studied the cold adaptation mechanism and the functional properties of a member of the glycoside hydrolase family 1 (GH1) from the Antarctic bacterium Marinomonas sp. ef1. This enzyme exhibits all typical functional hallmarks of cold adaptation, including high catalytic activity at 5 °C, broad substrate specificity, low thermal stability, and higher lability of the active site compared to the overall structure. Analysis of the here-reported crystal structure (1.8 Å resolution) and molecular dynamics simulations suggest that cold activity and thermolability may be due to a flexible region around the active site (residues 298-331), whereas the dynamic behavior of loops flanking the active site (residues 47-61 and 407-413) may favor enzyme-substrate interactions at the optimal temperature of catalysis (T) by tethering together protein regions lining the active site. Stapling of the N-terminus onto the surface of the β-barrel is suggested to partly counterbalance protein flexibility, thus providing a stabilizing effect. The tolerance of the enzyme to glucose and galactose is accounted for by the presence of a "gatekeeping" hydrophobic residue (Leu178), located at the entrance of the active site.

摘要

低温活性酶因其在低温下保持高活性的能力而支持生命活动,并且在几种生物技术应用中非常有用。尽管有关酶冷适应机制的信息仍然非常有限,无法设计出一般规则,但似乎在不同的蛋白质家族中和同一家族内都利用了非常多样化的结构和功能变化。在这方面,我们研究了来自南极细菌 Marinomonas sp. ef1 的糖苷水解酶家族 1 (GH1)成员的冷适应机制和功能特性。该酶表现出冷适应的所有典型功能特征,包括在 5°C 时具有高催化活性、广泛的底物特异性、低热稳定性以及与整体结构相比活性位点的更高不稳定性。对报告的晶体结构(1.8Å分辨率)和分子动力学模拟的分析表明,低温活性和热敏性可能是由于活性位点周围的柔性区域(残基 298-331)所致,而活性位点侧翼环的动态行为(残基 47-61 和 407-413)可能通过将构成活性位点的蛋白质区域系在一起,在最佳催化温度(T)时有利于酶-底物相互作用。推测 N 端与β-桶表面的连接部分抵消了蛋白质的柔性,从而提供了稳定作用。酶对葡萄糖和半乳糖的耐受性归因于“守门”疏水性残基(Leu178)的存在,该残基位于活性位点的入口处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验