Carrasco-Faus Guillermo, Márquez-Miranda Valeria, Diaz-Franulic Ignacio
Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago 8370146, Chile.
Biomolecules. 2025 Jul 22;15(8):1058. doi: 10.3390/biom15081058.
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (, ChPepT1) using molecular dynamics simulations, binding free energy calculations (MM/GBSA), and dynamic network analysis. We compare ChPepT1 to its human ortholog (hPepT1), a non-cold-adapted variant, to reveal key features enabling psychrophilic function. Our simulations show that ChPepT1 displays enhanced global flexibility, particularly in domains adjacent to the substrate-binding site and the C-terminal domain (CTD). While hPepT1 loses substrate binding affinity as temperature increases, ChPepT1 maintains stable peptide interactions across a broad thermal range. This thermodynamic buffering results from temperature-sensitive rearrangement of hydrogen bond networks and more dynamic lipid interactions. Importantly, we identify a temperature-responsive segment (TRS, residues 660-670) within the proximal CTD that undergoes an α-helix to coil transition, modulating long-range coupling with transmembrane helices. Dynamic cross-correlation analyses further suggest that ChPepT1, unlike hPepT1, reorganizes its interdomain communication in response to temperature shifts. Our findings suggest that cold tolerance in ChPepT1 arises from a combination of structural flexibility, resilient substrate binding, and temperature-sensitive interdomain dynamics. These results provide new mechanistic insight into thermal adaptation in membrane transporters and offer a framework for engineering proteins with enhanced functionality in extreme environments.
寒冷环境对膜蛋白的结构和功能完整性构成挑战,需要特殊的适应性变化以在低热能条件下维持活性。在此,我们利用分子动力学模拟、结合自由能计算(MM/GBSA)和动态网络分析,研究南极冰鱼肽转运体PepT1(ChPepT1)耐寒性的分子基础。我们将ChPepT1与其人类直系同源物(hPepT1,一种非冷适应变体)进行比较,以揭示实现嗜冷功能的关键特征。我们的模拟表明,ChPepT1表现出增强的全局灵活性,特别是在与底物结合位点和C末端结构域(CTD)相邻的结构域中。虽然hPepT1随着温度升高而失去底物结合亲和力,但ChPepT1在很宽的温度范围内维持稳定的肽相互作用。这种热力学缓冲源于氢键网络的温度敏感重排和更动态的脂质相互作用。重要的是,我们在近端CTD内鉴定出一个温度响应区段(TRS,第660 - 670位氨基酸残基),它经历α螺旋到卷曲的转变,调节与跨膜螺旋的长程耦合。动态交叉相关分析进一步表明,与hPepT1不同,ChPepT1会响应温度变化而重新组织其结构域间通讯。我们的研究结果表明,ChPepT1的耐寒性源于结构灵活性、弹性底物结合和温度敏感的结构域间动力学的综合作用。这些结果为膜转运体的热适应提供了新的机制见解,并为在极端环境中设计具有增强功能的蛋白质提供了框架。