Suppr超能文献

用于可重构、非易失性和自供电传感器内计算的基于Si/CuO异质结的光忆阻器

Si/CuO Heterojunction-Based Photomemristor for Reconfigurable, Non-Volatile, and Self-Powered In-Sensor Computing.

作者信息

Leng Kangmin, Wan Yu, Fu Yao, Wang Li, Wang Qisheng

机构信息

Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China.

Department of Materials, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China.

出版信息

Small. 2024 Jul;20(28):e2309945. doi: 10.1002/smll.202309945. Epub 2024 Feb 24.

Abstract

In-sensor computing has attracted considerable interest as a solution for overcoming the energy efficiency and response time limitations of the traditional von Neumann architecture. Recently, emerging memristors based on transition-metal oxides (TMOs) have attracted attention as promising candidates for in-memory computing owing to their tunable conductance, high speed, and low operational energy. However, the poor photoresponse of TMOs presents challenges for integrating sensing and processing units into a single device. This integration is crucial for eliminating the need for a sensor/processor interface and achieving energy-efficient in-sensor computing systems. In this study, a Si/CuO heterojunction-based photomemristor is proposed that combines the reversible resistive switching behavior of CuO with the appropriate optical absorption bandgap of the Si substrate. The proposed photomemristor demonstrates a simultaneous reconfigurable, non-volatile, and self-powered photoresponse, producing a microampere-level photocurrent at zero bias. The controlled migration of oxygen vacancies in CuO result in distinct energy-band bending at the interface, enabling multiple levels of photoresponsivity. Additionally, the device exhibits high stability and ultrafast response speed to the built-in electric field. Furthermore, the prototype photomemristor can be trained to emulate the attention-driven nature of the human visual system, indicating the tremendous potential of TMO-based photomemristors as hardware foundations for in-sensor computing.

摘要

作为克服传统冯·诺依曼架构能量效率和响应时间限制的一种解决方案,传感器内计算已引起了广泛关注。最近,基于过渡金属氧化物(TMO)的新兴忆阻器因其可调谐电导、高速和低操作能量,作为内存计算的有前途候选者而受到关注。然而,TMO的光响应较差,这给将传感和处理单元集成到单个设备中带来了挑战。这种集成对于消除对传感器/处理器接口的需求以及实现节能的传感器内计算系统至关重要。在本研究中,提出了一种基于Si/CuO异质结的光忆阻器,它将CuO的可逆电阻开关行为与Si衬底合适的光吸收带隙相结合。所提出的光忆阻器展示了同时可重构、非易失性和自供电的光响应,在零偏压下产生微安级的光电流。CuO中氧空位的受控迁移导致界面处明显的能带弯曲,实现了多级光响应性。此外,该器件对内置电场表现出高稳定性和超快响应速度。此外,原型光忆阻器可以经过训练来模拟人类视觉系统的注意力驱动特性,这表明基于TMO的光忆阻器作为传感器内计算的硬件基础具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验