Suppr超能文献

基于模拟电阻式随机存取存储器的内存计算与传感器的单片3D集成,用于节能近传感器计算。

Monolithic 3D Integration of Analog RRAM-Based Computing-in-Memory and Sensor for Energy-Efficient Near-Sensor Computing.

作者信息

Du Yiwei, Tang Jianshi, Li Yijun, Xi Yue, Li Yuankun, Li Jiaming, Huang Heyi, Qin Qi, Zhang Qingtian, Gao Bin, Deng Ning, Qian He, Wu Huaqiang

机构信息

School of Integrated Circuits, Beijing Advanced Innovation Center for Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.

出版信息

Adv Mater. 2024 May;36(22):e2302658. doi: 10.1002/adma.202302658. Epub 2023 Oct 25.

Abstract

In the era of the Internet of Things, vast amounts of data generated at sensory nodes impose critical challenges on the data-transfer bandwidth and energy efficiency of computing hardware. A near-sensor computing (NSC) architecture places the processing units closer to the sensors such that the generated data can be processed almost in situ with high efficiency. This study demonstrates the monolithic three-dimensional (M3D) integration of a photosensor array, analog computing-in-memory (CIM), and Si complementary metal-oxide-semiconductor (CMOS) logic circuits, named M3D-SAIL. This approach exploits the high-bandwidth on-chip data transfer and massively parallel CIM cores to realize an energy-efficient NSC architecture. The 1st layer of the Si CMOS circuits serves as the control logic and peripheral circuits. The 2nd layer comprises a 1 k-bit one-transistor-one-resistor (1T1R) array with InGaZnO field-effect transistor (IGZO-FET) and resistive random-access memory (RRAM) for analog CIM. The 3rd layer comprises multiple IGZO-FET-based photosensor arrays for wavelength-dependent optical sensing. The structural integrity and function of each layer are comprehensively verified. Furthermore, NSC is implemented using the M3D-SAIL architecture for a typical video keyframe-extraction task, achieving a high classification accuracy of 96.7% as well as a 31.5× lower energy consumption and 1.91× faster computing speed compared to its 2D counterpart.

摘要

在物联网时代,传感节点产生的大量数据给计算硬件的数据传输带宽和能源效率带来了严峻挑战。近传感器计算(NSC)架构将处理单元放置得更靠近传感器,以便生成的数据能够几乎在原地高效处理。本研究展示了一种光传感器阵列、模拟内存计算(CIM)和硅互补金属氧化物半导体(CMOS)逻辑电路的单片三维(M3D)集成,名为M3D-SAIL。这种方法利用高带宽片上数据传输和大规模并行CIM内核来实现节能的NSC架构。硅CMOS电路的第一层用作控制逻辑和外围电路。第二层包括一个1千位的单晶体管单电阻(1T1R)阵列,带有用于模拟CIM的铟镓锌氧化物场效应晶体管(IGZO-FET)和电阻式随机存取存储器(RRAM)。第三层包括多个基于IGZO-FET的光传感器阵列,用于波长相关的光学传感。各层的结构完整性和功能都得到了全面验证。此外,使用M3D-SAIL架构针对典型的视频关键帧提取任务实现了NSC,与二维对应物相比,实现了96.7%的高分类准确率,以及低31.5倍的能耗和快1.91倍的计算速度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验