Suppr超能文献

基于姿势特征的机器学习分类法检测出生后第二和第三天新生儿的扭动运动。

Writhing Movement Detection in Newborns on the Second and Third Day of Life Using Pose-Based Feature Machine Learning Classification.

机构信息

Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, 40-065 Katowice, Poland.

Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland.

出版信息

Sensors (Basel). 2020 Oct 22;20(21):5986. doi: 10.3390/s20215986.

Abstract

Observation of neuromotor development at an early stage of an infant's life allows for early diagnosis of deficits and the beginning of the therapeutic process. General movement assessment is a method of spontaneous movement observation, which is the foundation for contemporary attempts at objectification and computer-aided diagnosis based on video recordings' analysis. The present study attempts to automatically detect writhing movements, one of the normal general movement categories presented by newborns in the first weeks of life. A set of 31 recordings of newborns on the second and third day of life was divided by five experts into videos containing writhing movements (with occurrence time) and poor repertoire, characterized by a lower quality of movement in relation to the norm. Novel, objective pose-based features describing the scope, nature, and location of each limb's movement are proposed. Three machine learning algorithms are evaluated in writhing movements' detection in leave-one-out cross-validation for different feature extraction time windows and overlapping time. The experimental results make it possible to indicate the optimal parameters for which 80% accuracy was achieved. Based on automatically detected writhing movement percent in the video, infant movements are classified as writhing movements or poor repertoire with an area under the ROC (receiver operating characteristics) curve of 0.83.

摘要

观察婴儿生命早期的神经运动发育情况,可以早期诊断缺陷并开始治疗过程。全身运动评估是一种自发运动观察方法,是当代基于视频记录分析进行客观化和计算机辅助诊断尝试的基础。本研究试图自动检测扭动运动,这是新生儿在生命的头几周表现出的正常全身运动类型之一。一组 31 名出生后第二天和第三天的新生儿记录由五名专家分为包含扭动运动(出现时间)和不良动作的视频,这些视频的动作质量相对于正常水平较低。提出了一套新的、基于客观姿势的特征,用于描述每个肢体运动的范围、性质和位置。在留下一个进行交叉验证的情况下,评估了三种机器学习算法在扭动运动检测中的表现,针对不同的特征提取时间窗口和重叠时间。实验结果可以指出最佳参数,在这些参数下,准确率达到了 80%。基于自动检测到的视频中扭动运动的百分比,婴儿运动被分类为扭动运动或不良动作,ROC 曲线下面积为 0.83。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fac2/7660095/779e7938d64d/sensors-20-05986-g001.jpg

相似文献

2
Automated postural asymmetry assessment in infants neurodevelopmental evaluation using novel video-based features.
Comput Methods Programs Biomed. 2023 May;233:107455. doi: 10.1016/j.cmpb.2023.107455. Epub 2023 Mar 5.
4
A markerless pipeline to analyze spontaneous movements of preterm infants.
Comput Methods Programs Biomed. 2022 Nov;226:107119. doi: 10.1016/j.cmpb.2022.107119. Epub 2022 Sep 13.
6
Characteristics of general movements in preterm infants assessed by computer-based video analysis.
Physiother Theory Pract. 2018 Apr;34(4):286-292. doi: 10.1080/09593985.2017.1391908. Epub 2017 Oct 24.
8
A self-supervised spatio-temporal attention network for video-based 3D infant pose estimation.
Med Image Anal. 2024 Aug;96:103208. doi: 10.1016/j.media.2024.103208. Epub 2024 May 18.
9
Towards novel classification of infants' movement patterns supported by computerized video analysis.
J Neuroeng Rehabil. 2024 Jul 31;21(1):129. doi: 10.1186/s12984-024-01429-3.
10
3D limb movement tracking and analysis for neurological dysfunctions of neonates using multi-camera videos.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2395-2398. doi: 10.1109/EMBC.2016.7591212.

引用本文的文献

1
2
A systematic review of portable technologies for the early assessment of motor development in infants.
NPJ Digit Med. 2025 Jan 27;8(1):63. doi: 10.1038/s41746-025-01450-3.
3
AGMA-PESS: a deep learning-based infant pose estimator and sequence selector software for general movement assessment.
Front Pediatr. 2024 Dec 18;12:1465632. doi: 10.3389/fped.2024.1465632. eCollection 2024.
4
Detecting the symptoms of Parkinson's disease with non-standard video.
J Neuroeng Rehabil. 2024 May 3;21(1):72. doi: 10.1186/s12984-024-01362-5.
6
Spontaneous movements as prognostic tool of neurodevelopmental outcomes in preterm infants: a narrative review.
Clin Exp Pediatr. 2023 Nov;66(11):458-464. doi: 10.3345/cep.2022.01235. Epub 2023 May 16.
8
Applications of Pose Estimation in Human Health and Performance across the Lifespan.
Sensors (Basel). 2021 Nov 3;21(21):7315. doi: 10.3390/s21217315.
9
An Automated Approach for General Movement Assessment: A Pilot Study.
Front Pediatr. 2021 Aug 25;9:720502. doi: 10.3389/fped.2021.720502. eCollection 2021.
10
Novel AI driven approach to classify infant motor functions.
Sci Rep. 2021 May 10;11(1):9888. doi: 10.1038/s41598-021-89347-5.

本文引用的文献

1
Computer Vision to Automatically Assess Infant Neuromotor Risk.
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2431-2442. doi: 10.1109/TNSRE.2020.3029121. Epub 2020 Nov 6.
2
AI Approaches Towards Prechtl's Assessment of General Movements: A Systematic Literature Review.
Sensors (Basel). 2020 Sep 17;20(18):5321. doi: 10.3390/s20185321.
3
Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research.
Diagnostics (Basel). 2020 May 26;10(6):342. doi: 10.3390/diagnostics10060342.
4
Markerless Measurement and Evaluation of General Movements in Infants.
Sci Rep. 2020 Jan 29;10(1):1422. doi: 10.1038/s41598-020-57580-z.
6
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186. doi: 10.1109/TPAMI.2019.2929257. Epub 2020 Dec 4.
7
Automated pose estimation captures key aspects of General Movements at eight to 17 weeks from conventional videos.
Acta Paediatr. 2019 Oct;108(10):1817-1824. doi: 10.1111/apa.14781. Epub 2019 Apr 1.
8
Video and audio processing in paediatrics: a review.
Physiol Meas. 2019 Feb 26;40(2):02TR02. doi: 10.1088/1361-6579/ab0096.
9
A video/IMU hybrid system for movement estimation in infants.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:730-733. doi: 10.1109/EMBC.2017.8036928.
10
Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment.
JAMA Pediatr. 2017 Sep 1;171(9):897-907. doi: 10.1001/jamapediatrics.2017.1689.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验