Suppr超能文献

深度学习赋能的传感器融合提升了婴儿运动分类。

Deep learning empowered sensor fusion boosts infant movement classification.

作者信息

Kulvicius Tomas, Zhang Dajie, Poustka Luise, Bölte Sven, Jahn Lennart, Flügge Sarah, Kraft Marc, Zweckstetter Markus, Nielsen-Saines Karin, Wörgötter Florentin, Marschik Peter B

机构信息

Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Leibniz ScienceCampus Primate Cognition and German Center for Child and Adolescent Health (DZKJ), Göttingen, Germany.

Department of Child and Adolescent Psychiatry, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.

出版信息

Commun Med (Lond). 2025 Jan 14;5(1):16. doi: 10.1038/s43856-024-00701-w.

Abstract

BACKGROUND

To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors. These approaches are hardly comparable as all models are designed, trained and evaluated on proprietary/silo-data sets.

METHODS

With this study we propose a sensor fusion approach for assessing fidgety movements (FMs). FMs were recorded from 51 typically developing participants. We compared three different sensor modalities (pressure, inertial, and visual sensors). Various combinations and two sensor fusion approaches (late and early fusion) for infant movement classification were tested to evaluate whether a multi-sensor system outperforms single modality assessments. Convolutional neural network (CNN) architectures were used to classify movement patterns.

RESULTS

The performance of the three-sensor fusion (classification accuracy of 94.5%) is significantly higher than that of any single modality evaluated.

CONCLUSIONS

We show that the sensor fusion approach is a promising avenue for automated classification of infant motor patterns. The development of a robust sensor fusion system may significantly enhance AI-based early recognition of neurofunctions, ultimately facilitating automated early detection of neurodevelopmental conditions.

摘要

背景

为评估发育中的神经系统的完整性,普雷赫特尔一般运动评估(GMA)因其在诊断早期婴儿神经损伤方面的临床价值而得到认可。通过机器学习方法,GMA得到了越来越多的扩展,旨在扩大其应用范围,规避人类评估员培训成本,并进一步规范自发运动模式的分类。然而,现有的深度学习工具,所有这些都基于单一传感器模式,仍然远远不如训练有素的人类评估员。由于所有模型都是在专有/孤立数据集上设计、训练和评估的,这些方法几乎无法比较。

方法

在本研究中,我们提出了一种用于评估不安运动(FMs)的传感器融合方法。记录了51名发育正常的参与者的FMs。我们比较了三种不同的传感器模式(压力、惯性和视觉传感器)。测试了婴儿运动分类的各种组合和两种传感器融合方法(后期和早期融合),以评估多传感器系统是否优于单模式评估。使用卷积神经网络(CNN)架构对运动模式进行分类。

结果

三传感器融合的性能(分类准确率为94.5%)显著高于所评估的任何单模式。

结论

我们表明,传感器融合方法是自动分类婴儿运动模式的一条有前途的途径。强大的传感器融合系统的开发可能会显著增强基于人工智能的神经功能早期识别,最终促进神经发育状况的自动早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32fb/11733215/117291a1165c/43856_2024_701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验