Li Qile, Di Bernardo Iolanda, Maniatis Johnathon, McEwen Daniel, Dominguez-Celorrio Amelia, Bhuiyan Mohammad T H, Zhao Mengting, Tadich Anton, Watson Liam, Lowe Benjamin, Vu Thi-Hai-Yen, Trang Chi Xuan, Hwang Jinwoong, Mo Sung-Kwan, Fuhrer Michael S, Edmonds Mark T
School of Physics and Astronomy, Monash University, Clayton, Victoria, 3168, Australia.
ARC Centre for Future Low Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia.
Adv Mater. 2024 Jun;36(24):e2312004. doi: 10.1002/adma.202312004. Epub 2024 Mar 18.
Quantum anomalous Hall (QAH) insulators transport charge without resistance along topologically protected chiral 1D edge states. Yet, in magnetic topological insulators to date, topological protection is far from robust, with zero-magnetic field QAH effect only realized at temperatures an order of magnitude below the Néel temperature T, though small magnetic fields can stabilize QAH effect. Understanding why topological protection breaks down is therefore essential to realizing QAH effect at higher temperatures. Here a scanning tunneling microscope is used to directly map the size of exchange gap (E) and its spatial fluctuation in the QAH insulator 5-layer MnBiTe. Long-range fluctuations of E are observed, with values ranging between 0 (gapless) and 70 meV, appearing to be uncorrelated to individual surface point defects. The breakdown of topological protection is directly imaged, showing that the gapless edge state, the hallmark signature of a QAH insulator, hybridizes with extended gapless regions in the bulk. Finally, it is unambiguously demonstrated that the gapless regions originate from magnetic disorder, by demonstrating that a small magnetic field restores E in these regions, explaining the recovery of topological protection in magnetic fields. The results indicate that overcoming magnetic disorder is the key to exploiting the unique properties of QAH insulators.
量子反常霍尔(QAH)绝缘体沿着拓扑保护的手性一维边缘态无电阻地传输电荷。然而,迄今为止,在磁性拓扑绝缘体中,拓扑保护远非稳健,零磁场QAH效应仅在比奈尔温度(T)低一个数量级的温度下才能实现,尽管小磁场可以稳定QAH效应。因此,理解拓扑保护为何失效对于在更高温度下实现QAH效应至关重要。在此,利用扫描隧道显微镜直接绘制了QAH绝缘体5层MnBiTe中交换能隙((E))的大小及其空间涨落情况。观察到了(E)的长程涨落,其值在0(无隙)到70毫电子伏特之间,似乎与单个表面点缺陷无关。直接成像了拓扑保护的失效情况,结果表明,作为QAH绝缘体标志性特征的无隙边缘态与体内扩展的无隙区域发生了杂化。最后,通过证明小磁场能恢复这些区域中的(E),明确表明无隙区域源于磁无序,这就解释了磁场中拓扑保护的恢复。结果表明,克服磁无序是利用QAH绝缘体独特性质的关键。