Department of Physics, The Pennsylvania State University, University Park, PA, USA.
Materials Research Institute, The Pennsylvania State University, University Park, PA, USA.
Nature. 2020 Dec;588(7838):419-423. doi: 10.1038/s41586-020-3020-3. Epub 2020 Dec 16.
A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer). The QAH effect has been realized in magnetic topological insulators and magic-angle twisted bilayer graphene. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.
量子反常霍尔(QAH)态是一种二维拓扑绝缘态,在零磁场下具有量子化的霍尔电阻 h/(Ce)和零纵向电阻(其中 h 是普朗克常数,e 是基本电荷,Chern 数 C 是整数)。QAH 效应已在磁性拓扑绝缘体和魔角扭曲双层石墨烯中得到实现。然而,到目前为止,在零磁场下的 QAH 效应仅在 C=1 时得到实现。在这里,我们使用分子束外延法制备的由交替的磁性和未掺杂拓扑绝缘体层组成的多层结构中实现了具有可调谐 Chern 数(高达 C=5)的良好量子化 QAH 效应。这些 QAH 绝缘体的 Chern 数由多层结构中未掺杂拓扑绝缘体层的数量决定。此外,我们证明可以通过改变磁性拓扑绝缘体层中的磁性掺杂浓度或内部磁性拓扑绝缘体层的厚度来调节给定多层结构的 Chern 数。我们开发了一个理论模型来解释我们的实验观察结果,并为具有高可调 Chern 数的 QAH 绝缘体建立相图。这种绝缘体的实现促进了在节能电子设备中应用无耗散手性边缘电流,并为开发多通道量子计算和更高容量手性电路互连提供了机会。