Suppr超能文献

基于第二心音统计特征的先天性心脏病相关性肺动脉高压诊断

[Diagnosis of pulmonary hypertension associated with congenital heart disease based on statistical features of the second heart sound].

作者信息

Yang Xuankai, Sun Jing, Yang Hongbo, Guo Tao, Pan Jiahua, Wang Weilian

机构信息

School of Information Science and Engineering, Yunnan University, Kunming 650504, P. R. China.

Cardiovascular Hospital Affiliated to Kunming Medical University, Kunming 650102, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):41-50. doi: 10.7507/1001-5515.202304037.

Abstract

Aiming at the problems of obscure clinical auscultation features of pulmonary hypertension associated with congenital heart disease and the complexity of existing machine-aided diagnostic algorithms, an algorithm based on the statistical characteristics of the high-frequency components of the second heart sound signal is proposed. Firstly, an endpoint detection adaptive segmentation method is employed to extract the second heart sounds. Subsequently, the high-frequency component of the heart sound is decomposed using the discrete wavelet transform. Statistical features including the Hurst exponent, Lempel-Ziv information and sample entropy are extracted from this component. Finally, the extracted features are utilized to train an extreme gradient boosting algorithm (XGBoost) classifier, which achieves an accuracy of 80.45% in triple classification. Notably, this method eliminates the need for a noise reduction algorithm, allows for swift feature extraction, and achieves effective multi-classification using only three features. It is promising for early screening of pulmonary hypertension associated with congenital heart disease.

摘要

针对先天性心脏病相关性肺动脉高压临床听诊特征不明显以及现有机器辅助诊断算法复杂的问题,提出了一种基于第二心音信号高频成分统计特征的算法。首先,采用端点检测自适应分割方法提取第二心音。随后,利用离散小波变换对心音的高频成分进行分解。从该成分中提取包括赫斯特指数、莱姆佩尔-齐夫信息和样本熵在内的统计特征。最后,利用提取的特征训练极端梯度提升算法(XGBoost)分类器,该分类器在三分类中准确率达到80.45%。值得注意的是,该方法无需降噪算法,能够快速提取特征,仅用三个特征就实现了有效的多分类。它在先天性心脏病相关性肺动脉高压的早期筛查方面具有广阔前景。

相似文献

1
[Diagnosis of pulmonary hypertension associated with congenital heart disease based on statistical features of the second heart sound].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):41-50. doi: 10.7507/1001-5515.202304037.
2
[Classification of heart sound signals in congenital heart disease based on convolutional neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Oct 25;36(5):728-736. doi: 10.7507/1001-5515.201806031.
3
Automatic pediatric congenital heart disease classification based on heart sound signal.
Artif Intell Med. 2022 Apr;126:102257. doi: 10.1016/j.artmed.2022.102257. Epub 2022 Feb 19.
5
[Heart sound classification based on sub-band envelope and convolution neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):969-978. doi: 10.7507/1001-5515.202012024.
6
[Heart sound classification based on improved mel frequency cepstrum coefficient and integrated decision network method].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1140-1148. doi: 10.7507/1001-5515.202111059.
7
Heart sound classification from unsegmented phonocardiograms.
Physiol Meas. 2017 Jul 31;38(8):1658-1670. doi: 10.1088/1361-6579/aa724c.
8
[A heart sound classification method based on joint decision of extreme gradient boosting and deep neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):10-20. doi: 10.7507/1001-5515.202006025.
9
Lung sound classification using cepstral-based statistical features.
Comput Biol Med. 2016 Aug 1;75:118-29. doi: 10.1016/j.compbiomed.2016.05.013. Epub 2016 May 22.

本文引用的文献

1
Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review.
JAMA. 2022 Apr 12;327(14):1379-1391. doi: 10.1001/jama.2022.4402.
2
Automatic pediatric congenital heart disease classification based on heart sound signal.
Artif Intell Med. 2022 Apr;126:102257. doi: 10.1016/j.artmed.2022.102257. Epub 2022 Feb 19.
3
Characterisation of paediatric pulmonary hypertensive vascular disease from the PPHNet Registry.
Eur Respir J. 2021 Dec 31;59(1). doi: 10.1183/13993003.03337-2020. Print 2022 Jan.
4
Classification of heart sounds based on the combination of the modified frequency wavelet transform and convolutional neural network.
Med Biol Eng Comput. 2020 Sep;58(9):2039-2047. doi: 10.1007/s11517-020-02218-5. Epub 2020 Jul 7.
5
Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
Eur Respir J. 2019 Jan 24;53(1). doi: 10.1183/13993003.01913-2018. Print 2019 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验