Suppr超能文献

基于交互力模糊识别的上肢康复机器人模式调整控制策略研究

[Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force].

作者信息

Li Guoning, Tao Liang, Meng Jingyan, Ye Sijia, Feng Guang, Zhao Dazheng, Hu Yang, Tang Min, Song Tao, Fu Rongzhen, Zuo Guokun, Zhang Jiaji, Shi Changcheng

机构信息

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China.

Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang 315300, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):90-97. doi: 10.7507/1001-5515.202207018.

Abstract

In the process of robot-assisted training for upper limb rehabilitation, a passive training strategy is usually used for stroke patients with flaccid paralysis. In order to stimulate the patient's active rehabilitation willingness, the rehabilitation therapist will use the robot-assisted training strategy for patients who gradually have the ability to generate active force. This study proposed a motor function assessment technology for human upper-limb based on fuzzy recognition on interaction force and human-robot interaction control strategy based on assistance-as-needed. A passive training mode based on the calculated torque controller and an assisted training mode combined with the potential energy field were designed, and then the interactive force information collected by the three-dimensional force sensor during the training process was imported into the fuzzy inference system, the degree of active participation was proposed, and the corresponding assisted strategy algorithms were designed to realize the adaptive adjustment of the two modes. The significant correlation between the degree of active participation and the surface electromyography signals (sEMG) was found through the experiments, and the method had a shorter response time compared to a control strategy that only adjusted the mode through the magnitude of interaction force, making the robot safer during the training process.

摘要

在机器人辅助上肢康复训练过程中,对于弛缓性麻痹的中风患者通常采用被动训练策略。为了激发患者主动康复的意愿,康复治疗师会对逐渐具备产生主动力能力的患者采用机器人辅助训练策略。本研究提出了一种基于相互作用力模糊识别的人体上肢运动功能评估技术以及基于按需辅助的人机交互控制策略。设计了基于计算转矩控制器的被动训练模式和结合势能场的辅助训练模式,然后将训练过程中三维力传感器采集的交互力信息导入模糊推理系统,提出主动参与度,并设计相应的辅助策略算法以实现两种模式的自适应调整。通过实验发现主动参与度与表面肌电信号(sEMG)之间存在显著相关性,并且与仅通过相互作用力大小来调整模式的控制策略相比,该方法响应时间更短,使得训练过程中机器人更安全。

相似文献

6
Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot.基于性能的缆索驱动上肢康复机器人混合控制
IEEE Trans Biomed Eng. 2021 Apr;68(4):1351-1359. doi: 10.1109/TBME.2020.3027823. Epub 2021 Mar 18.

本文引用的文献

5
The role of positive affect on social participation following stroke.积极情绪对卒中后社会参与的作用。
Disabil Rehabil. 2012;34(25):2119-23. doi: 10.3109/09638288.2012.673684. Epub 2012 Apr 16.
10
Robot-aided neurorehabilitation of the upper extremities.上肢的机器人辅助神经康复
Med Biol Eng Comput. 2005 Jan;43(1):2-10. doi: 10.1007/BF02345116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验