OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Sci Rep. 2024 Feb 25;14(1):4576. doi: 10.1038/s41598-024-55092-8.
Personalized treatment strategies based on non-invasive biomarkers have potential to improve patient management in patients with newly diagnosed glioblastoma (GBM). The residual tumour burden after surgery in GBM patients is a prognostic imaging biomarker. However, in clinical patient management, its assessment is a manual and time-consuming process that is at risk of inter-rater variability. Furthermore, the prediction of patient outcome prior to radiotherapy may identify patient subgroups that could benefit from escalated radiotherapy doses. Therefore, in this study, we investigate the capabilities of traditional radiomics and 3D convolutional neural networks for automatic detection of the residual tumour status and to prognosticate time-to-recurrence (TTR) and overall survival (OS) in GBM using postoperative [C] methionine positron emission tomography (MET-PET) and gadolinium-enhanced T1-w magnetic resonance imaging (MRI). On the independent test data, the 3D-DenseNet model based on MET-PET achieved the best performance for residual tumour detection, while the logistic regression model with conventional radiomics features performed best for T1c-w MRI (AUC: MET-PET 0.95, T1c-w MRI 0.78). For the prognosis of TTR and OS, the 3D-DenseNet model based on MET-PET integrated with age and MGMT status achieved the best performance (Concordance-Index: TTR 0.68, OS 0.65). In conclusion, we showed that both deep-learning and conventional radiomics have potential value for supporting image-based assessment and prognosis in GBM. After prospective validation, these models may be considered for treatment personalization.
基于无创生物标志物的个体化治疗策略有可能改善新诊断胶质母细胞瘤(GBM)患者的患者管理。GBM 患者手术后的残留肿瘤负荷是一种预后影像学生物标志物。然而,在临床患者管理中,其评估是一个手动且耗时的过程,存在评分者间变异性的风险。此外,在放疗前预测患者的预后结果,可以确定可能从增加放疗剂量中获益的患者亚组。因此,在这项研究中,我们研究了传统放射组学和 3D 卷积神经网络在使用术后[C]蛋氨酸正电子发射断层扫描(MET-PET)和钆增强 T1-w 磁共振成像(MRI)自动检测残留肿瘤状态以及预测胶质母细胞瘤的时间复发(TTR)和总生存(OS)方面的能力。在独立的测试数据中,基于 MET-PET 的 3D-DenseNet 模型在残留肿瘤检测方面表现最佳,而基于常规放射组学特征的逻辑回归模型在 T1c-w MRI 方面表现最佳(AUC:MET-PET 0.95,T1c-w MRI 0.78)。对于 TTR 和 OS 的预后,基于 MET-PET 的 3D-DenseNet 模型与年龄和 MGMT 状态相结合,取得了最佳性能(一致性指数:TTR 0.68,OS 0.65)。总之,我们表明深度学习和常规放射组学都有可能支持 GBM 的基于图像的评估和预后。经过前瞻性验证后,这些模型可能会被考虑用于治疗个体化。