Choczynski Jack M, Shokoor Bilal, Salazar Jorge, Zuend Andreas, Davies James F
Department of Chemistry, University of California Riverside Riverside CA USA
Department of Atmospheric and Oceanic Sciences, McGill University Montreal Quebec Canada.
Chem Sci. 2024 Jan 17;15(8):2963-2974. doi: 10.1039/d3sc05164a. eCollection 2024 Feb 22.
Liquid-liquid phase separation (LLPS) is a thermodynamically driven process that occurs in mixtures of low miscibility material. LLPS is an important process in chemical, biological, and environmental systems. In atmospheric chemistry, LLPS in aerosol containing internally-mixed organic and inorganic particles has been an area of significant interest, with particles separating to form organic-rich and aqueous phases on dehydration. This alters the optical properties of the particles, has been connected to changes in the cloud nucleation ability of the aerosol, and potentially changes the reactivity of particles towards gas-phase oxidants. Although the chemical systems that undergo LLPS have become quite well-characterized, the properties and processes of LLPS particles are quite poorly understood. In this work, we characterize LLPS in aerosol particles containing ammonium sulfate and triethylene glycol (3EG), a semi-volatile organic molecule. We explore the relative humidity (RH) conditions under which LLPS occurs and characterize the rate of evaporation of 3EG from well-mixed and LLPS particles as a function of RH. We show that the evaporation rates vary with RH due to changes in chemical activity, however no clear change in the dynamics following LLPS are observed. We interpret our observations using a thermodynamic model (AIOMFAC) coupled with an evaporation model and show that a significant increase in the activity coefficient of 3EG as the RH decreases, required for LLPS to occur, obscures a clear step-change in the evaporation rates following LLPS. By characterizing the evaporation rates, we estimate the composition of the organic-rich phase and compare our results to thermodynamic predictions. This study is the first to explore the connection between LLPS and the chemical evolution of aerosol particles the evaporation of semi-volatile organic material. Ultimately, we reveal that the thermodynamics of non-ideal mixing are primarily responsible for the controlling both the rate of evaporation and the onset of LLPS, with LLPS itself having limited impact on the rate of evaporation in a fluid system. These results have significant implications for understanding and predicting the lifetime of aerosol particles, their effect on cloud formation, and the chemical evolution of multiphase systems by particle-gas partitioning and heterogeneous reactions.
液-液相分离(LLPS)是一种由热力学驱动的过程,发生在低互溶性材料的混合物中。LLPS是化学、生物和环境系统中的一个重要过程。在大气化学中,含有内部混合有机和无机颗粒的气溶胶中的LLPS一直是一个备受关注的领域,颗粒在脱水时会分离形成富有机相和水相。这改变了颗粒的光学性质,与气溶胶云凝结核能力的变化有关,并可能改变颗粒对气相氧化剂的反应性。尽管经历LLPS的化学系统已经得到了很好的表征,但LLPS颗粒的性质和过程却知之甚少。在这项工作中,我们表征了含有硫酸铵和三甘醇(3EG,一种半挥发性有机分子)的气溶胶颗粒中的LLPS。我们探索了LLPS发生的相对湿度(RH)条件,并表征了3EG从充分混合颗粒和LLPS颗粒中的蒸发速率随RH的变化。我们表明,由于化学活性的变化,蒸发速率随RH而变化,然而在LLPS之后未观察到动力学的明显变化。我们使用热力学模型(AIOMFAC)结合蒸发模型来解释我们的观察结果,并表明随着RH降低,LLPS发生所需的3EG活度系数显著增加,这掩盖了LLPS之后蒸发速率的明显阶跃变化。通过表征蒸发速率,我们估计了富有机相的组成,并将我们的结果与热力学预测进行了比较。这项研究首次探索了LLPS与气溶胶颗粒化学演化(半挥发性有机物质的蒸发)之间的联系。最终,我们揭示了非理想混合的热力学主要负责控制蒸发速率和LLPS的开始,而LLPS本身对流体系统中的蒸发速率影响有限。这些结果对于理解和预测气溶胶颗粒的寿命、它们对云形成的影响以及通过颗粒-气体分配和非均相反应的多相系统的化学演化具有重要意义。