Suppr超能文献

超微米和亚微米气溶胶颗粒中的液-液相分离

Liquid-Liquid Phase Separation in Supermicrometer and Submicrometer Aerosol Particles.

作者信息

Freedman Miriam Arak

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

Acc Chem Res. 2020 Jun 16;53(6):1102-1110. doi: 10.1021/acs.accounts.0c00093. Epub 2020 May 20.

Abstract

ConspectusThe interactions of aerosol particles with light and clouds are among the most uncertain aspects of anthropogenic climate forcings. The effects of aerosol particles on climate depend on their optical properties, heterogeneous chemistry, water uptake behavior, and ice nucleation activity. These properties in turn depend on aerosol physics and chemistry including composition, size, shape, internal structure (morphology), and phase state. The greatest numbers of particles are found at small, submicrometer sizes, and the properties of aerosol particles can differ on the nanoscale compared with measurements of bulk materials. As a result, our focus has been on characterizing the phase transitions of aerosol particles in both supermicrometer and submicrometer particles. The phase transition of particular interest for us has been liquid-liquid phase separation (LLPS), which occurs when components of a solution phase separate due to a difference in solubilities. For example, organic compounds can have limited solubility in salt solutions especially as the water content decreases, increasing the concentration of the salt solution, and causing phase separation between organic-rich and inorganic-rich phases. To characterize the systems of interest, we primarily use optical microscopy for supermicrometer particles and cryogenic-transmission microscopy for submicrometer particles.This Account details our main results to date for the phase transitions of supermicrometer particles and the morphology of submicrometer aerosol. We have found that the relative humidity (RH) at which LLPS occurs (separation RH; SRH) is highly sensitive to the composition of the particles. For supermicrometer particles, SRH decreases as the pH is lowered to atmospherically relevant values. SRH also decreases when non-phase-separating organic compounds are added to the particles. For submicrometer particles, a size dependence of morphology is observed in systems that undergo LLPS in supermicrometer particles. In the limit of slow drying rates, particles <30 nm are homogeneous and larger particles are phase-separated. This size dependence of aerosol morphology arises because small particles cannot overcome the activation barrier needed to form a new phase when phase separation occurs by a nucleation and growth mechanism. The inhibition of LLPS in small particles is observed for mixtures of ammonium sulfate with single organic compounds as well as complex organics like α-pinene secondary organic matter. The morphology of particles affects activation diameters for the formation of cloud condensation nuclei. These results more generally have implications for aerosol properties that affect the climate system. In addition, LLPS is also widely studied in materials and biological chemistry, and our results could potentially translate to implications for these fields.

摘要

综述

气溶胶颗粒与光和云的相互作用是人为气候强迫中最不确定的方面之一。气溶胶颗粒对气候的影响取决于它们的光学性质、非均相化学、水分吸收行为和冰核活性。这些性质又取决于气溶胶的物理和化学性质,包括组成、大小、形状、内部结构(形态)和相态。数量最多的颗粒存在于亚微米级的小尺寸范围内,与大块材料的测量结果相比,气溶胶颗粒的性质在纳米尺度上可能会有所不同。因此,我们的重点一直是表征超微米级和亚微米级颗粒中气溶胶颗粒的相变。我们特别感兴趣的相变是液-液相分离(LLPS),当溶液相的成分由于溶解度差异而分离时就会发生这种情况。例如,有机化合物在盐溶液中的溶解度可能有限,尤其是随着含水量降低,盐溶液浓度增加时,会导致富有机相和富无机相之间的相分离。为了表征感兴趣的系统,我们主要使用光学显微镜来研究超微米级颗粒,使用低温透射显微镜来研究亚微米级颗粒。

本综述详细介绍了我们迄今为止关于超微米级颗粒相变和亚微米级气溶胶形态的主要研究结果。我们发现发生液-液相分离(LLPS)的相对湿度(RH)(分离相对湿度;SRH)对颗粒的组成高度敏感。对于超微米级颗粒,当pH值降至与大气相关的值时,SRH会降低。当向颗粒中添加非相分离有机化合物时,SRH也会降低。对于亚微米级颗粒,在超微米级颗粒中发生LLPS的系统中观察到形态的尺寸依赖性。在干燥速率较慢的极限情况下,小于30纳米的颗粒是均匀的,而较大的颗粒是相分离的。气溶胶形态的这种尺寸依赖性是由于小颗粒在通过成核和生长机制发生相分离时无法克服形成新相所需的活化能垒。在硫酸铵与单一有机化合物以及像α-蒎烯二次有机物质这样的复杂有机物的混合物中,观察到小颗粒中LLPS受到抑制。颗粒的形态会影响云凝结核形成的活化直径。这些结果更广泛地对影响气候系统的气溶胶性质具有重要意义。此外,液-液相分离(LLPS)在材料和生物化学领域也得到了广泛研究,我们的结果可能会对这些领域产生潜在影响。

相似文献

1
2
Dynamics of Liquid-Liquid Phase Separation in Submicrometer Aerosol.亚微米气溶胶中液-液相分离的动力学。
J Phys Chem A. 2021 May 27;125(20):4446-4453. doi: 10.1021/acs.jpca.1c01985. Epub 2021 May 17.
5
6
Phase Transitions in Organic and Organic/Inorganic Aerosol Particles.有机及有机/无机气溶胶颗粒中的相变
Annu Rev Phys Chem. 2024 Jun;75(1):257-281. doi: 10.1146/annurev-physchem-083122-115909. Epub 2024 Jun 14.
8
Phase separation in organic aerosol.有机气溶胶的相分离。
Chem Soc Rev. 2017 Dec 11;46(24):7694-7705. doi: 10.1039/c6cs00783j.
10
pH Dependence of Liquid-Liquid Phase Separation in Organic Aerosol.有机气溶胶中液-液相分离的pH依赖性
J Phys Chem Lett. 2016 Oct 6;7(19):3861-3865. doi: 10.1021/acs.jpclett.6b01621. Epub 2016 Sep 19.

引用本文的文献

5
Scratching the Surface of Individual Aerosol Particle Properties.深入探究单个气溶胶颗粒的性质
ACS Cent Sci. 2023 Nov 14;9(11):2009-2011. doi: 10.1021/acscentsci.3c01362. eCollection 2023 Nov 22.
7
Geometric Analysis of Free and Accessible Volume in Atmospheric Nanoparticles.大气纳米颗粒中自由和可及体积的几何分析
ACS Omega. 2023 Sep 7;8(37):33481-33492. doi: 10.1021/acsomega.3c03293. eCollection 2023 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验