Department of Emergency Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Front Immunol. 2024 Feb 9;15:1345321. doi: 10.3389/fimmu.2024.1345321. eCollection 2024.
A novel risk scoring system, predicated on DNA damage response (DDR), was developed to enhance prognostic predictions and potentially inform the creation of more effective therapeutic protocols for sepsis.
To thoroughly delineate the expression profiles of DDR markers within the context of sepsis, an analytical approach utilizing single-cell RNA-sequencing (scRNA-seq) was implemented. Our study utilized single-cell analysis techniques alongside weighted gene co-expression network analysis (WGCNA) to pinpoint the genes that exhibit the most substantial associations with DNA damage response (DDR). Through Cox proportional hazards LASSO regression, we distinguished DDR-associated genes and established a risk model, enabling the stratification of patients into high- and low-risk groups. Subsequently, we carried out an analysis to determine our model's predictive accuracy regarding patient survival. Moreover, we examined the distinct biological characteristics, various signal transduction routes, and immune system responses in sepsis patients, considering different risk categories and outcomes related to survival. Lastly, we conducted experimental validation of the identified genes through and assays, employing RT-PCR, ELISA, and flow cytometry.
Both single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic analyses have demonstrated a strong correlation between DNA damage response (DDR) levels and sepsis prognosis. Specific cell subtypes, including monocytes, megakaryocytes, CD4+ T cells, and neutrophils, have shown elevated DDR activity. Cells with increased DDR scores exhibited more robust and numerous interactions with other cell populations. The weighted gene co-expression network analysis (WGCNA) and single-cell analyses revealed 71 DDR-associated genes. We developed a four-gene risk scoring system using ARL4C, CD247, RPL7, and RPL31, identified through univariate COX, LASSO COX regression, and log-rank (Mantel-Cox) tests. Nomograms, calibration plots, and decision curve analyses (DCA) regarding these specific genes have provided significant clinical benefits for individuals diagnosed with sepsis. The study suggested that individuals categorized as lower-risk demonstrated enhanced infiltration of immune cells, upregulated expression of immune regulators, and a more prolific presence of immune-associated functionalities and pathways. RT-qPCR analyses on a sepsis rat model revealed differential gene expression predominantly in the four targeted genes. Furthermore, ARL4C knockdown in sepsis model and vitro caused increased inflammatory response and a worse prognosis.
The delineated DDR expression landscape offers insights into sepsis pathogenesis, whilst our riskScore model, based on a robust four-gene signature, could underpin personalized sepsis treatment strategies.
为了提高败血症的预后预测能力,并可能为制定更有效的治疗方案提供信息,开发了一种基于 DNA 损伤反应(DDR)的新型风险评分系统。
为了全面描绘败血症背景下 DDR 标志物的表达谱,我们采用了单细胞 RNA 测序(scRNA-seq)分析方法。我们的研究利用单细胞分析技术和加权基因共表达网络分析(WGCNA)来确定与 DNA 损伤反应(DDR)相关性最强的基因。通过 Cox 比例风险 LASSO 回归,我们区分了与 DDR 相关的基因,并建立了风险模型,能够将患者分为高风险和低风险组。随后,我们进行了分析以确定我们的模型对患者生存的预测准确性。此外,我们还考虑了不同的风险类别和与生存相关的结果,研究了败血症患者不同的生物学特征、各种信号转导途径和免疫系统反应。最后,我们通过 RT-PCR、ELISA 和流式细胞术等实验验证了通过 和 测定鉴定的基因。
单细胞 RNA 测序(scRNA-seq)和批量转录组分析都表明 DNA 损伤反应(DDR)水平与败血症预后之间存在很强的相关性。特定的细胞亚型,包括单核细胞、巨核细胞、CD4+T 细胞和中性粒细胞,表现出 DDR 活性增强。具有较高 DDR 评分的细胞与其他细胞群体的相互作用更加稳健和频繁。加权基因共表达网络分析(WGCNA)和单细胞分析共鉴定出 71 个与 DDR 相关的基因。我们使用 ARL4C、CD247、RPL7 和 RPL31 开发了一个四基因风险评分系统,该系统通过单变量 COX、LASSO COX 回归和对数秩(Mantel-Cox)检验确定。关于这些特定基因的列线图、校准图和决策曲线分析(DCA)为诊断为败血症的个体提供了显著的临床获益。研究表明,被归类为低风险的个体表现出免疫细胞的浸润增强、免疫调节剂的表达上调以及更多的免疫相关功能和途径。对败血症大鼠模型的 RT-qPCR 分析显示,四个靶向基因的差异表达主要存在。此外,在败血症模型中敲低 ARL4C 会导致炎症反应增加和预后恶化。
所描绘的 DDR 表达图谱为败血症发病机制提供了深入的了解,而我们基于稳健的四基因特征的 riskScore 模型可以为个性化败血症治疗策略提供支持。