Coleman Colin R, Pallos Judit, Arreola-Bustos Alicia, Wang Lu, Raftery Daniel, Promislow Daniel E L, Martin Ian
bioRxiv. 2024 Feb 14:2024.02.12.580013. doi: 10.1101/2024.02.12.580013.
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying strains, we find a strong relationship between life span and age-related dopamine neuron loss. Naturally short-lived strains exhibit a loss of dopamine neurons but not generalized neurodegeneration, while long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress and vulnerability to silencing the familial PD gene . Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (GCL) overexpression is sufficient to normalize ROS levels, extend life span and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is frequently reported in idiopathic PD patient brain. Building on this evidence, we detect reduced levels of GCL catalytic and modulatory subunits in brain from PD patients harboring the LRRK2 G2019S mutation, implicating possible glutathione deficits in familial LRRK2-linked PD. Our study across and human PD systems suggests that glutathione plays an important role in the influence of aging on PD neurodegeneration.
衰老为帕金森病(PD)的最大风险因素,这表明大脑中与年龄相关的变化会促使多巴胺能神经元更易受损。然而,目前尚不清楚单纯衰老是否足以导致显著的多巴胺能神经元丧失,若如此,其与PD相关神经退行性变的关联方式也尚不明确。在此,通过对大量自然变异品系进行研究,我们发现寿命与年龄相关的多巴胺能神经元丧失之间存在紧密联系。自然寿命短的品系会出现多巴胺能神经元丧失,但无全身性神经退行性变,而长寿品系在整个年龄段都保留多巴胺能神经元。代谢组学分析显示,寿命短的品系中谷胱甘肽水平较低,这与活性氧(ROS)水平升高、对氧化应激的敏感性以及家族性PD基因沉默的易感性相关。引人注目的是,通过过表达谷氨酸 - 半胱氨酸连接酶(GCL)来提高神经元谷胱甘肽水平,足以使ROS水平正常化、延长寿命并阻止寿命短的背景下多巴胺能神经元的丧失,这表明谷胱甘肽缺乏是与短寿命相关的神经退行性表型的核心因素。这些发现可能与人类PD发病机制相关,在特发性PD患者大脑中经常报道有谷胱甘肽耗竭现象。基于这一证据,我们在携带LRRK2 G2019S突变的PD患者大脑中检测到GCL催化亚基和调节亚基水平降低,这意味着家族性LRRK2相关PD中可能存在谷胱甘肽缺乏。我们在小鼠和人类PD系统中的研究表明,谷胱甘肽在衰老对PD神经退行性变的影响中起重要作用。