Suppr超能文献

利用多参数方法识别城市含水层中的地下水硝酸盐来源(伊朗阿尔博兹省)。

Identification of groundwater nitrate sources in an urban aquifer (Alborz Province, Iran) using a multi-parameter approach.

机构信息

Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, District 5, Kabul, Afghanistan.

Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran.

出版信息

Environ Geochem Health. 2024 Feb 26;46(3):100. doi: 10.1007/s10653-024-01872-0.

Abstract

High concentrations of NŌ in water resources are detrimental to both human health and aquatic ecosystems. Identification of NŌ sources and biogeochemical processes is a crucial step in managing and controlling NŌ pollution. In this study, land use, hydrochemical data, dual stable isotopic ratios and Bayesian Stable Isotope Mixing Models (BSIMM) were integrated to identify NŌ sources and estimate their proportional contributions to the contamination of the Karaj Urban Aquifer (Iran). Elevated NŌ concentrations indicated a severe NŌ pollution, with 39 and 52% of groundwater (GW) samples displaying the concentrations of NŌ in exceedance of the World Health Organization (WHO) standard of 50 mg NŌ L in the rainy and dry seasons, respectively. Dual stable isotopes inferred that urban sewage is the main NŌ source in the Karaj Plain. The diagram of NŌ/Cl‾ versus Cl‾ confirmed that municipal sewage is the major source of NŌ. Results also showed that biogeochemical nitrogen dynamics are mainly influenced by nitrification, while denitrification is minimal. The BSIMM model suggested that NŌ originated predominantly from urban sewage (78.2%), followed by soil organic nitrogen (12.2%), and chemical fertilizer (9.5%) in the dry season. In the wet season, the relative contributions of urban sewage, soil nitrogen and chemical fertilizer were 87.5, 6.7, and 5.5%, respectively. The sensitivity analysis for the BSIMM modeling indicates that the isotopic signatures of sewage had the major impact on the overall GW NŌ source apportionment. The findings provide important insights for local authorities to support effective and sustainable GW resources management in the Karaj Urban Aquifer. It also demonstrates that employing Bayesian models combined with multi-parameters can improve the accuracy of NŌ source identification.

摘要

高浓度的硝态氮(Nitrate,NŌ)对人类健康和水生生态系统都有害。识别 NŌ 的来源和生物地球化学过程是管理和控制 NŌ 污染的关键步骤。在这项研究中,整合了土地利用、水化学数据、双重稳定同位素比值和贝叶斯稳定同位素混合模型(BSIMM),以识别 NŌ 的来源,并估计其对卡拉季城市含水层(伊朗)污染的比例贡献。高浓度的 NŌ 表明存在严重的 NŌ 污染,分别有 39%和 52%的地下水(GW)样本在雨季和旱季的 NŌ 浓度超过世界卫生组织(WHO)规定的 50 毫克 NŌ/L 标准。双重稳定同位素推断,城市污水是卡拉季平原 NŌ 的主要来源。NŌ/Cl‾与 Cl‾的关系图证实,城市污水是 NŌ 的主要来源。结果还表明,生物地球化学氮动态主要受硝化作用影响,而反硝化作用最小。BSIMM 模型表明,在旱季,NŌ 主要来源于城市污水(78.2%),其次是土壤有机氮(12.2%)和化肥(9.5%)。在雨季,城市污水、土壤氮和化肥的相对贡献分别为 87.5%、6.7%和 5.5%。BSIMM 模型的敏感性分析表明,污水的同位素特征对整个 GW NŌ 源分配有重大影响。研究结果为当地政府提供了重要的见解,有助于支持卡拉季城市含水层中有效的和可持续的 GW 资源管理。它还表明,采用贝叶斯模型结合多参数可以提高 NŌ 来源识别的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验