Department Psychologie, Ludwig-Maximilians-Universität München, Germany.
Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Germany.
Br J Psychol. 2019 May;110(2):328-356. doi: 10.1111/bjop.12359. Epub 2018 Dec 2.
Visual working memory (VWM) is a central bottleneck in human information processing. Its capacity is most often measured in terms of how many individual-item representations VWM can hold (k). In the standard task employed to estimate k, an array of highly discriminable colour patches is maintained and, after a short retention interval, compared to a test display (change detection). Recent research has shown that with more complex, structured displays, change-detection performance is, in addition to individual-item representations, supported by ensemble representations formed as a result of spatial subgroupings. Here, by asking participants to additionally localize the change, we reveal indication for an influence of ensemble representations even in the very simple, unstructured displays of the colour-patch change-detection task. Critically, pure-item models from which standard formulae of k are derived do not consider ensemble representations and, therefore, potentially overestimate k. To gauge this overestimation, we develop an item-plus-ensemble model of change detection and change localization. Estimates of k from this new model are about 1 item (~30%) lower than the estimates from traditional pure-item models, even if derived from the same data sets.
视觉工作记忆 (VWM) 是人类信息处理的核心瓶颈。其容量通常以 VWM 可以存储多少个单个项目的表示形式 (k) 来衡量。在用于估计 k 的标准任务中,会维持一个高度可区分的颜色补丁数组,然后在短的保留间隔后,与测试显示(变化检测)进行比较。最近的研究表明,对于更复杂、结构化的显示,除了单个项目的表示之外,变化检测性能还得到了由空间分组形成的集合表示的支持。在这里,通过要求参与者额外定位变化,我们揭示了即使在颜色补丁变化检测任务的非常简单、非结构化的显示中,集合表示也会产生影响的迹象。至关重要的是,标准 k 公式所源自的纯项目模型不考虑集合表示,因此可能会高估 k。为了衡量这种高估,我们开发了一种用于变化检测和变化定位的项目加集合模型。即使从相同的数据集推导,这个新模型的 k 估计值也比传统的纯项目模型低约 1 个项目(~30%)。