Suppr超能文献

基于扭曲 DNA 折纸术的手性单层膜用于自旋过滤。

Twisted DNA Origami-Based Chiral Monolayers for Spin Filtering.

机构信息

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

J Am Chem Soc. 2024 Mar 6;146(9):5883-5893. doi: 10.1021/jacs.3c11566. Epub 2024 Feb 26.

Abstract

DNA monolayers with inherent chirality play a pivotal role across various domains including biosensors, DNA chips, and bioelectronics. Nonetheless, conventional DNA chiral monolayers, typically constructed from single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), often lack structural orderliness and design flexibility at the interface. Structural DNA nanotechnology has emerged as a promising solution to tackle these challenges. In this study, we present a strategy for crafting highly adaptable twisted DNA origami-based chiral monolayers. These structures exhibit distinct interfacial assembly characteristics and effectively mitigate the structural disorder of dsDNA monolayers, which is constrained by a limited persistence length of ∼50 nm of dsDNA. We highlight the spin-filtering capabilities of seven representative DNA origami-based chiral monolayers, demonstrating a maximal one-order-of-magnitude increase in spin-filtering efficiency per unit area compared with conventional dsDNA chiral monolayers. Intriguingly, our findings reveal that the higher-order tertiary chiral structure of twisted DNA origami further enhances the spin-filtering efficiency. This work paves the way for the rational design of DNA chiral monolayers.

摘要

具有内在手性的 DNA 单层在包括生物传感器、DNA 芯片和生物电子学在内的各个领域都发挥着关键作用。然而,传统的 DNA 手性单层,通常由单链 DNA(ssDNA)或双链 DNA(dsDNA)构建,往往在界面处缺乏结构有序性和设计灵活性。结构 DNA 纳米技术的出现为解决这些挑战提供了一种有前途的解决方案。在这项研究中,我们提出了一种构建高度适应性扭曲 DNA 折纸手性单层的策略。这些结构表现出独特的界面组装特性,并有效地减轻了 dsDNA 单层的结构无序性,dsDNA 单层的结构无序性受到 dsDNA 约 50nm 的有限持久长度的限制。我们强调了七个代表性的基于 DNA 折纸的手性单层的自旋过滤能力,与传统的 dsDNA 手性单层相比,每单位面积的自旋过滤效率提高了一个数量级。有趣的是,我们的研究结果表明,扭曲 DNA 折纸的更高阶的三级手性结构进一步提高了自旋过滤效率。这项工作为 DNA 手性单层的合理设计铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验