Suppr超能文献

去灾难化研究不可重复性。

Decatastrophizing research irreproducibility.

机构信息

Department of Pharmaceutical Sciences, University of Illinois-Chicago, USA.

出版信息

Biochem Pharmacol. 2024 Oct;228:116090. doi: 10.1016/j.bcp.2024.116090. Epub 2024 Feb 24.

Abstract

The reported inability to replicate research findings from the published literature precipitated extensive efforts to identify and correct perceived deficiencies in the execution and reporting of biomedical research. Despite these efforts, quantification of the magnitude of irreproducible research or the effectiveness of associated remediation initiatives, across diverse biomedical disciplines, has made little progress over the last decade. The idea that science is self-correcting has been further challenged in recent years by the proliferation of unverified or fraudulent scientific content generated by predatory journals, paper mills, pre-print server postings, and the inappropriate use of artificial intelligence technologies. The degree to which the field of pharmacology has been negatively impacted by these evolving pressures is unknown. Regardless of these ambiguities, pharmacology societies and their associated journals have championed best practices to enhance the experimental rigor and reporting of pharmacological research. The value of transparent and independent validation of raw data generation and its analysis in basic and clinical research is exemplified by the discovery, development, and approval of Highly Effective Modulator Therapy (HEMT) for Cystic Fibrosis (CF) patients. This provides a didactic counterpoint to concerns regarding the current state of biomedical research. Key features of this important therapeutic advance include objective construction of basic and translational research hypotheses, associated experimental designs, and validation of experimental effect sizes with quantitative alignment to meaningful clinical endpoints with input from the FDA, which enhanced scientific rigor and transparency with real world deliverables for patients in need.

摘要

研究结果无法重现的报道促使人们做出广泛努力,以确定并纠正生物医学研究执行和报告中被认为存在的缺陷。尽管做出了这些努力,但在过去十年中,对于不可重现研究的程度或相关补救措施的有效性,在不同的生物医学学科中,量化工作几乎没有取得进展。近年来,由于掠夺性期刊、论文工厂、预印本服务器发布以及人工智能技术的不当使用所产生的未经证实或欺诈性的科学内容的泛滥,科学具有自我纠错能力的观点受到了进一步的挑战。药理学领域受到这些不断变化的压力负面影响的程度尚不清楚。无论存在这些不确定性,药理学学会及其相关期刊都倡导最佳实践,以提高药理学研究的实验严谨性和报告质量。透明和独立验证原始数据生成及其在基础和临床研究中的分析的价值,体现在高效调节剂疗法(HEMT)治疗囊性纤维化(CF)患者的发现、开发和批准中。这为人们对当前生物医学研究状况的担忧提供了一个有益的对照。这一重要治疗进展的关键特征包括客观构建基础和转化研究假设、相关实验设计以及通过与 FDA 合作,使用定量方法将实验效果大小与有意义的临床终点对齐进行验证,从而提高了科学严谨性和透明度,并为有需要的患者带来了实际成果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验