Zhu Chengxu, D'Agostino Carmine, de Visser Sam P
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
Inorg Chem. 2024 Mar 11;63(10):4474-4481. doi: 10.1021/acs.inorgchem.3c04246. Epub 2024 Feb 26.
Transforming CO into valuable materials is an important reaction in catalysis, especially because CO concentrations in the atmosphere have been growing steadily due to extensive fossil fuel usage. From an environmental perspective, reduction of CO to valuable materials should be catalyzed by an environmentally benign catalyst and avoid the use of heavy transition-metal ions. In this work, we present a computational study into a novel iron(I) porphyrin catalyst for CO reduction, namely, with a tetraphenylporphyrin ligand and analogues. In particular, we investigated iron(I) tetraphenylporphyrin with one of the -phenyl groups substituted with -urea, -urea, or -2-amide groups. These substituents can provide hydrogen-bonding interactions in the second coordination sphere with bound ligands and assist with proton relay. Furthermore, our studies investigated bicarbonate and phenol as stabilizers and proton donors in the reaction mechanism. Potential energy landscapes for double protonation of iron(I) porphyrinate with bound CO are reported. The work shows that the bicarbonate bridges the urea/amide groups to the CO and iron center and provides a tight bonding pattern with strong hydrogen-bonding interactions that facilitates easy proton delivery and reduction of CO. Specifically, bicarbonate provides a low-energy proton shuttle mechanism to form CO and water efficiently. Furthermore, the -urea group locks bicarbonate and CO in a tight orientation and helps with ideal proton transfer, while there is more mobility and lesser stability with an -amide group in that position instead. Our calculations show that the -urea group leads to reduction in proton-transfer barriers, in line with experimental observation. We then applied electric-field-effect calculations to estimate the environmental effects on the two proton-transfer steps in the reaction. These calculations describe the perturbations that enhance the driving forces for the proton-transfer steps and have been used to make predictions about how the catalysts can be further engineered for more enhanced CO reduction processes.
将一氧化碳转化为有价值的材料是催化领域的一个重要反应,特别是由于大量使用化石燃料,大气中的一氧化碳浓度一直在稳步上升。从环境角度来看,将一氧化碳还原为有价值的材料应该由环境友好型催化剂催化,并避免使用重金属过渡金属离子。在这项工作中,我们对一种用于一氧化碳还原的新型铁(I)卟啉催化剂进行了计算研究,即带有四苯基卟啉配体及其类似物的催化剂。特别是,我们研究了其中一个苯基被脲基、胍基或2-酰胺基取代的铁(I)四苯基卟啉。这些取代基可以在第二配位层与结合的配体提供氢键相互作用,并协助质子传递。此外,我们的研究考察了碳酸氢盐和苯酚在反应机理中作为稳定剂和质子供体的作用。报道了与结合的一氧化碳发生双质子化的铁(I)卟啉酸盐的势能面。这项工作表明,碳酸氢盐将脲基/酰胺基与一氧化碳和铁中心连接起来,并提供了一种紧密的键合模式,具有很强的氢键相互作用,便于质子传递和一氧化碳的还原。具体来说,碳酸氢盐提供了一种低能质子穿梭机制,以有效地形成一氧化碳和水。此外,脲基将碳酸氢盐和一氧化碳锁定在紧密的取向,并有助于理想的质子转移,而在该位置的酰胺基则具有更大的流动性和更低的稳定性。我们的计算表明,脲基导致质子转移势垒降低,这与实验观察结果一致。然后,我们应用电场效应计算来估计环境对反应中两个质子转移步骤的影响。这些计算描述了增强质子转移步骤驱动力的扰动,并已被用于预测如何进一步设计催化剂以实现更高效的一氧化碳还原过程。