Suppr超能文献

利用液态金属等离子体非线性的一体化全光逻辑门。

All-in-one, all-optical logic gates using liquid metal plasmon nonlinearity.

作者信息

Xu Jinlong, Zhang Chi, Wang Yulin, Wang Mudong, Xu Yanming, Wei Tianqi, Xie Zhenda, Liu Shiqiang, Lee Chao-Kuei, Hu Xiaopeng, Zhao Gang, Lv Xinjie, Zhang Han, Zhu Shining, Zhou Lin

机构信息

Department of Physics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China.

National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.

出版信息

Nat Commun. 2024 Feb 26;15(1):1726. doi: 10.1038/s41467-024-46014-3.

Abstract

Electronic processors are reaching the physical speed ceiling that heralds the era of optical processors. Multifunctional all-optical logic gates (AOLGs) of massively parallel processing are of great importance for large-scale integrated optical processors with speed far in excess of electronics, while are rather challenging due to limited operation bandwidth and multifunctional integration complexity. Here we for the first time experimentally demonstrate a reconfigurable all-in-one broadband AOLG that achieves nine fundamental Boolean logics in a single configuration, enabled by ultrabroadband (400-4000 nm) plasmon-enhanced thermo-optical nonlinearity (TONL) of liquid-metal Galinstan nanodroplet assemblies (GNAs). Due to the unique heterogeneity (broad-range geometry sizes, morphology, assembly profiles), the prepared GNAs exhibit broadband plasmonic opto-thermal effects (hybridization, local heating, energy transfer, etc.), resulting in a huge nonlinear refractive index under the order of 10-10 within visual-infrared range. Furthermore, a generalized control-signal light route is proposed for the dynamic TONL modulation of reversible spatial-phase shift, based on which nine logic functions are reconfigurable in one single AOLG configuration. Our work will provide a powerful strategy on large-bandwidth all-optical circuits for high-density data processing in the future.

摘要

电子处理器正接近预示着光学处理器时代到来的物理速度极限。大规模并行处理的多功能全光逻辑门(AOLG)对于速度远超电子器件的大规模集成光学处理器至关重要,然而由于有限的操作带宽和多功能集成复杂性,其颇具挑战性。在此,我们首次通过实验展示了一种可重构的一体化宽带AOLG,它在单一配置中实现了九种基本布尔逻辑,这得益于液态金属镓铟锡纳米液滴组件(GNA)的超宽带(400 - 4000 nm)等离子体增强热光非线性(TONL)。由于独特的异质性(宽范围的几何尺寸、形态、组装轮廓),所制备的GNA表现出宽带等离子体光热效应(杂交、局部加热、能量转移等),在可见 - 红外范围内产生了高达10^-10量级的巨大非线性折射率。此外,还提出了一种用于可逆空间相移动态TONL调制的通用控制信号光路,基于此,在单一AOLG配置中可重构九种逻辑功能。我们的工作将为未来高密度数据处理的大带宽全光电路提供有力策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70b2/10897469/9620aaf28452/41467_2024_46014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验