Suppr超能文献

单细胞基因组学和人工智能解析癌细胞状态的可塑性。

Deciphering cancer cell state plasticity with single-cell genomics and artificial intelligence.

机构信息

Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW, 2010, Australia.

School of Biomedical Science, Faculty of Medicine UNSW Sydney, Kensington, NSW, 2010, Australia.

出版信息

Genome Med. 2024 Feb 26;16(1):36. doi: 10.1186/s13073-024-01309-4.

Abstract

Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states-for example, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour progression and therapeutic response. The advent of single-cell assays means these features can now be measured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked by analysis of 'bulk' genomic data-constituted of the average signal from millions of cells. Single-cell technologies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell plasticity.

摘要

肿瘤细胞的癌症干细胞可塑性是指肿瘤细胞在状态之间动态切换的能力,例如,从癌症干细胞到非癌症干细胞状态。受调控过程的控制,细胞通过连续体进行转变,这个转变空间通常被称为细胞状态景观。癌症细胞状态的可塑性导致了不同的生物学行为,某些细胞状态或状态转变负责肿瘤的进展和治疗反应。单细胞分析的出现意味着现在可以对单个癌细胞进行这些特征的测量,并进行大规模测量。然而,由于数据的高维度、基因组特征之间复杂的关系以及缺乏对定义癌症细胞状态的基因组特征的精确了解,为描绘癌症细胞状态景观的人工智能方法打开了大门。细胞状态可塑性对癌症表型(如治疗抵抗、转移和休眠)的贡献被“批量”基因组数据分析所掩盖,“批量”基因组数据分析由数百万个细胞的平均信号组成。单细胞技术通过产生肿瘤生态系统的高维细胞景观、量化单个细胞的基因组特征并创建更详细的模型来研究癌症可塑性来解决这个问题(Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020)。与此同时,人工智能方法的快速发展导致了许多可用于研究癌症干细胞可塑性的工具。

相似文献

5
Noncoding RNAs in Cancer Cell Plasticity.癌细胞可塑性中的非编码RNA
Adv Exp Med Biol. 2016;927:173-89. doi: 10.1007/978-981-10-1498-7_6.
7
Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis.CD44 异构体在上皮-间充质转化和转移中的作用。
Clin Exp Metastasis. 2022 Jun;39(3):391-406. doi: 10.1007/s10585-022-10146-x. Epub 2022 Jan 12.
9
Clinical implications of epithelial cell plasticity in cancer progression.上皮细胞可塑性在癌症进展中的临床意义。
Cancer Lett. 2015 Sep 28;366(1):1-10. doi: 10.1016/j.canlet.2015.06.007. Epub 2015 Jun 19.
10
Reprogramming to developmental plasticity in cancer stem cells.癌症干细胞重编程至发育可塑性
Dev Biol. 2017 Oct 15;430(2):266-274. doi: 10.1016/j.ydbio.2017.07.025. Epub 2017 Jul 31.

本文引用的文献

6
RNA velocity-current challenges and future perspectives.RNA 速度:当前挑战与未来展望。
Mol Syst Biol. 2021 Aug;17(8):e10282. doi: 10.15252/msb.202110282.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验