Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, 4059, Australia.
Genome Med. 2021 Sep 27;13(1):152. doi: 10.1186/s13073-021-00968-x.
Deep learning is a subdiscipline of artificial intelligence that uses a machine learning technique called artificial neural networks to extract patterns and make predictions from large data sets. The increasing adoption of deep learning across healthcare domains together with the availability of highly characterised cancer datasets has accelerated research into the utility of deep learning in the analysis of the complex biology of cancer. While early results are promising, this is a rapidly evolving field with new knowledge emerging in both cancer biology and deep learning. In this review, we provide an overview of emerging deep learning techniques and how they are being applied to oncology. We focus on the deep learning applications for omics data types, including genomic, methylation and transcriptomic data, as well as histopathology-based genomic inference, and provide perspectives on how the different data types can be integrated to develop decision support tools. We provide specific examples of how deep learning may be applied in cancer diagnosis, prognosis and treatment management. We also assess the current limitations and challenges for the application of deep learning in precision oncology, including the lack of phenotypically rich data and the need for more explainable deep learning models. Finally, we conclude with a discussion of how current obstacles can be overcome to enable future clinical utilisation of deep learning.
深度学习是人工智能的一个分支,它使用一种称为人工神经网络的机器学习技术,从大型数据集提取模式并进行预测。深度学习在医疗保健领域的广泛应用,以及高度特征化的癌症数据集的可用性,加速了人们对深度学习在癌症复杂生物学分析中的应用的研究。虽然早期的结果很有希望,但这是一个快速发展的领域,癌症生物学和深度学习领域都在不断涌现新知识。在这篇综述中,我们提供了对新兴深度学习技术的概述,以及它们在肿瘤学中的应用。我们重点介绍了用于组学数据类型的深度学习应用,包括基因组、甲基化和转录组数据,以及基于组织病理学的基因组推断,并就如何整合不同的数据类型来开发决策支持工具提供了一些看法。我们提供了具体的例子,说明深度学习如何应用于癌症诊断、预后和治疗管理。我们还评估了深度学习在精准肿瘤学中的应用目前存在的局限性和挑战,包括缺乏表型丰富的数据和需要更具解释性的深度学习模型。最后,我们讨论了如何克服当前的障碍,为未来深度学习在临床中的应用铺平道路。
Genome Med. 2021-9-27
J Hematol Oncol. 2023-11-27
Cancer Sci. 2020-3-21
Adv Exp Med Biol. 2022
Genome Med. 2024-3-27
Brief Bioinform. 2020-12-1
Genome. 2021-4
Cancer Lett. 2020-4-3
Brief Bioinform. 2025-7-2
World J Gastrointest Oncol. 2025-8-15
Mayo Clin Proc Digit Health. 2025-7-18
Nat Biomed Eng. 2021-6
Emerg Top Life Sci. 2017-11-14
BMC Genomics. 2021-1-6