文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在癌症诊断、预后和治疗选择中的应用。

Deep learning in cancer diagnosis, prognosis and treatment selection.

机构信息

Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.

School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, 4059, Australia.

出版信息

Genome Med. 2021 Sep 27;13(1):152. doi: 10.1186/s13073-021-00968-x.


DOI:10.1186/s13073-021-00968-x
PMID:34579788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8477474/
Abstract

Deep learning is a subdiscipline of artificial intelligence that uses a machine learning technique called artificial neural networks to extract patterns and make predictions from large data sets. The increasing adoption of deep learning across healthcare domains together with the availability of highly characterised cancer datasets has accelerated research into the utility of deep learning in the analysis of the complex biology of cancer. While early results are promising, this is a rapidly evolving field with new knowledge emerging in both cancer biology and deep learning. In this review, we provide an overview of emerging deep learning techniques and how they are being applied to oncology. We focus on the deep learning applications for omics data types, including genomic, methylation and transcriptomic data, as well as histopathology-based genomic inference, and provide perspectives on how the different data types can be integrated to develop decision support tools. We provide specific examples of how deep learning may be applied in cancer diagnosis, prognosis and treatment management. We also assess the current limitations and challenges for the application of deep learning in precision oncology, including the lack of phenotypically rich data and the need for more explainable deep learning models. Finally, we conclude with a discussion of how current obstacles can be overcome to enable future clinical utilisation of deep learning.

摘要

深度学习是人工智能的一个分支,它使用一种称为人工神经网络的机器学习技术,从大型数据集提取模式并进行预测。深度学习在医疗保健领域的广泛应用,以及高度特征化的癌症数据集的可用性,加速了人们对深度学习在癌症复杂生物学分析中的应用的研究。虽然早期的结果很有希望,但这是一个快速发展的领域,癌症生物学和深度学习领域都在不断涌现新知识。在这篇综述中,我们提供了对新兴深度学习技术的概述,以及它们在肿瘤学中的应用。我们重点介绍了用于组学数据类型的深度学习应用,包括基因组、甲基化和转录组数据,以及基于组织病理学的基因组推断,并就如何整合不同的数据类型来开发决策支持工具提供了一些看法。我们提供了具体的例子,说明深度学习如何应用于癌症诊断、预后和治疗管理。我们还评估了深度学习在精准肿瘤学中的应用目前存在的局限性和挑战,包括缺乏表型丰富的数据和需要更具解释性的深度学习模型。最后,我们讨论了如何克服当前的障碍,为未来深度学习在临床中的应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f690/8477474/385e17e98a32/13073_2021_968_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f690/8477474/434a53c42435/13073_2021_968_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f690/8477474/385e17e98a32/13073_2021_968_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f690/8477474/434a53c42435/13073_2021_968_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f690/8477474/385e17e98a32/13073_2021_968_Fig2_HTML.jpg

相似文献

[1]
Deep learning in cancer diagnosis, prognosis and treatment selection.

Genome Med. 2021-9-27

[2]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[3]
Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches.

Int J Mol Sci. 2020-2-1

[4]
Artificial intelligence in oncology.

Cancer Sci. 2020-3-21

[5]
Artificial Intelligence for Precision Oncology.

Adv Exp Med Biol. 2022

[6]
Deep learning in cancer genomics and histopathology.

Genome Med. 2024-3-27

[7]
Deep learning of pharmacogenomics resources: moving towards precision oncology.

Brief Bioinform. 2020-12-1

[8]
Investigating the effects of artificial intelligence on the personalization of breast cancer management: a systematic study.

BMC Cancer. 2024-7-18

[9]
Machine learning for precision medicine.

Genome. 2021-4

[10]
Machine Learning in oncology: A clinical appraisal.

Cancer Lett. 2020-4-3

引用本文的文献

[1]
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.

Brief Bioinform. 2025-7-2

[2]
Systematic review and meta-analysis of artificial intelligence for image-based lung cancer classification and prognostic evaluation.

NPJ Precis Oncol. 2025-8-26

[3]
Fatty acid-binding protein 4 as a biomarker for colon adenocarcinoma risk and prognosis: Challenges and future directions.

World J Gastrointest Oncol. 2025-8-15

[4]
Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153.

Sci Rep. 2025-8-20

[5]
Multimodal prediction of tyrosine kinase inhibitors therapy outcomes in advanced EGFR-mutated NSCLC patients.

J Transl Med. 2025-8-18

[6]
Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.

Mayo Clin Proc Digit Health. 2025-7-18

[7]
Predicting the prognosis of epithelial ovarian cancer patients based on deep learning models.

Front Oncol. 2025-7-25

[8]
Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Sci Rep. 2025-8-11

[9]
Cancer-specific senescence signature promotes malignant phenotypes and immunotherapy resistance in colorectal cancer.

Front Immunol. 2025-7-24

[10]
Development and Validation of Survival Prediction Models for Patients With Pineoblastomas Using Deep Learning: A SEER-Based Study.

Cancer Rep (Hoboken). 2025-8

本文引用的文献

[1]
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat Mach Intell. 2019-5

[2]
Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.

Comput Biol Med. 2021-8

[3]
AI-based pathology predicts origins for cancers of unknown primary.

Nature. 2021-6

[4]
Independent real-world application of a clinical-grade automated prostate cancer detection system.

J Pathol. 2021-6

[5]
Pan-cancer image-based detection of clinically actionable genetic alterations.

Nat Cancer. 2020-8

[6]
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.

Genome Med. 2021-3-11

[7]
Data-efficient and weakly supervised computational pathology on whole-slide images.

Nat Biomed Eng. 2021-6

[8]
Computational biology: deep learning.

Emerg Top Life Sci. 2017-11-14

[9]
Classification of Cancer Types Using Graph Convolutional Neural Networks.

Front Phys. 2020-6

[10]
A review of deep learning applications for genomic selection.

BMC Genomics. 2021-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索