Suppr超能文献

利用流形学习绘制肿瘤细胞状态景观中的表型可塑性图谱。

Mapping Phenotypic Plasticity upon the Cancer Cell State Landscape Using Manifold Learning.

机构信息

Department of Genetics, Yale University, New Haven, Connecticut.

Cellarity, Somerville, Massachusetts.

出版信息

Cancer Discov. 2022 Aug 5;12(8):1847-1859. doi: 10.1158/2159-8290.CD-21-0282.

Abstract

ABSTRACT

Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies proliferating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold learning techniques as emerging computational tools to effectively model cell state dynamics in a way that mimics our understanding of the cell state landscape. We anticipate that "state-gating" therapies targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance.

SIGNIFICANCE

Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimental and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated progress in uncovering new vulnerabilities for therapeutic exploitation.

摘要

摘要

表型可塑性描述了癌细胞发生动态、非遗传细胞状态变化的能力,这种变化放大了癌症异质性,促进了转移和治疗逃逸。因此,癌细胞在一个癌症细胞状态景观的轨迹所定义的动态转变中占据了一个连续的表型状态谱。随着技术的不断发展,可以系统地以单细胞分辨率记录分子机制,我们阐明了流形学习技术作为新兴的计算工具,以有效地模拟细胞状态动力学,这种模拟方式模仿了我们对细胞状态景观的理解。我们预计,针对表型可塑性的“状态门控”疗法将限制癌症异质性、转移和治疗耐药性。

意义

表型可塑性的非遗传机制已成为肿瘤异质性、转移和治疗耐药性的重要驱动因素。在此,我们讨论了新的实验和计算技术,将表型可塑性定义为一个支架,以指导加速揭示新的治疗弱点的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/078c/9353259/7d6b493b16e4/1847fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验