Mattes Maximilian, Volkov Mikhail, Baum Peter
Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
Nat Commun. 2024 Feb 26;15(1):1743. doi: 10.1038/s41467-024-45744-8.
The need for ever-faster information processing requires exceptionally small devices that operate at frequencies approaching the terahertz and petahertz regimes. For the diagnostics of such devices, researchers need a spatiotemporal tool that surpasses the device under test in speed and spatial resolution. Consequently, such a tool cannot be provided by electronics itself. Here we show how ultrafast electron beam probe with terahertz-compressed electron pulses can directly sense local electro-magnetic fields in electronic devices with femtosecond, micrometre and millivolt resolution under normal operation conditions. We analyse the dynamical response of a coplanar waveguide circuit and reveal the impulse response, signal reflections, attenuation and waveguide dispersion directly in the time domain. The demonstrated measurement bandwidth reaches 10 THz and the sensitivity to electric potentials is tens of millivolts or -20 dBm. Femtosecond time resolution and the capability to directly integrate our technique into existing electron-beam inspection devices in semiconductor industry makes our femtosecond electron beam probe a promising tool for research and development of next-generation electronics at unprecedented speed and size.
对信息处理速度越来越快的需求,需要尺寸极小的器件,这些器件要在接近太赫兹和皮赫兹频段的频率下运行。对于此类器件的诊断,研究人员需要一种时空工具,其速度和空间分辨率要超过被测器件。因此,电子学本身无法提供这样一种工具。在此,我们展示了具有太赫兹压缩电子脉冲的超快电子束探针如何能在正常运行条件下,以飞秒、微米和毫伏分辨率直接探测电子器件中的局部电磁场。我们分析了共面波导电路的动态响应,并直接在时域中揭示了脉冲响应、信号反射、衰减和波导色散。所展示的测量带宽达到10太赫兹,对电势的灵敏度为几十毫伏或-20分贝毫瓦。飞秒时间分辨率以及将我们的技术直接集成到半导体行业现有电子束检测设备中的能力,使我们的飞秒电子束探针成为以前所未有的速度和尺寸进行下一代电子产品研发的有前途的工具。