Ossiander M, Golyari K, Scharl K, Lehnert L, Siegrist F, Bürger J P, Zimin D, Gessner J A, Weidman M, Floss I, Smejkal V, Donsa S, Lemell C, Libisch F, Karpowicz N, Burgdörfer J, Krausz F, Schultze M
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, EU, Germany.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, MA, 02138, USA.
Nat Commun. 2022 Mar 25;13(1):1620. doi: 10.1038/s41467-022-29252-1.
Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency.
光场驱动的电荷运动将半导体技术与具有阿秒时间控制的电场联系起来。受基于电子的极速信号处理的推动,强场激发已被证明对于超快操纵固体的电子特性是可行的,但发现会引发令人困惑的激发后动力学。在此,我们报告在大约一飞秒内单光子填充宽禁带电介质的导带。我们用可见光的电场控制随后的布洛赫波包运动。由此产生的电流允许对光场进行采样并跟踪由光信号驱动的电荷运动。我们的方法利用了导带带宽的很大一部分来最大化运行速度。我们确定向相邻能带的载流子转移以及相关的群速度反转是最终限制固体中电流控制速度的机制。我们的结果暗示了经典信号处理的一个基本限制,并表明高达1 PHz频率的固态光电子学的可行性。