Suppr超能文献

通过自动纤维定量的无监督机器学习探索多发性硬化症的亚型。

Exploring subtypes of multiple sclerosis through unsupervised machine learning of automated fiber quantification.

作者信息

Liang Xueheng, Yan Zichun, Li Yongmei

机构信息

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No 1 Youyi Road, Yuzhong District, Chongqing, 40016, China.

Department of Radiology, Banan Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Jpn J Radiol. 2024 Jun;42(6):581-589. doi: 10.1007/s11604-024-01535-1. Epub 2024 Feb 27.

Abstract

PURPOSE

This study aimed to subtype multiple sclerosis (MS) patients using unsupervised machine learning on white matter (WM) fiber tracts and investigate the implications for cognitive function and disability outcomes.

MATERIALS AND METHODS

We utilized the automated fiber quantification (AFQ) method to extract 18 WM fiber tracts from the imaging data of 103 MS patients in total. Unsupervised machine learning techniques were applied to conduct cluster analysis and identify distinct subtypes. Clinical and diffusion tensor imaging (DTI) metrics were compared among the subtypes, and survival analysis was conducted to examine disability progression and cognitive impairment.

RESULTS

The clustering analysis revealed three distinct subtypes with variations in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Significant differences were observed in clinical and DTI metrics among the subtypes. Subtype 3 showed the fastest disability progression and cognitive decline, while Subtype 2 exhibited a slower rate, and Subtype 1 fell in between.

CONCLUSIONS

Subtyping MS based on WM fiber tracts using unsupervised machine learning identified distinct subtypes with significant cognitive and disability differences. WM abnormalities may serve as biomarkers for predicting disease outcomes, enabling personalized treatment strategies and prognostic predictions for MS patients.

摘要

目的

本研究旨在使用无监督机器学习对白质(WM)纤维束进行多发性硬化症(MS)患者的亚型分类,并研究其对认知功能和残疾结局的影响。

材料与方法

我们利用自动纤维定量(AFQ)方法从总共103例MS患者的成像数据中提取18条WM纤维束。应用无监督机器学习技术进行聚类分析并识别不同的亚型。比较各亚型之间的临床和扩散张量成像(DTI)指标,并进行生存分析以检查残疾进展和认知障碍。

结果

聚类分析揭示了三个不同的亚型,各亚型在各向异性分数(FA)、平均扩散率(MD)、轴向扩散率(AD)和径向扩散率(RD)方面存在差异。各亚型之间在临床和DTI指标上观察到显著差异。亚型3显示出最快的残疾进展和认知下降,而亚型2表现出较慢的速度,亚型1则介于两者之间。

结论

使用无监督机器学习基于WM纤维束对MS进行亚型分类,识别出具有显著认知和残疾差异的不同亚型。WM异常可能作为预测疾病结局的生物标志物,从而为MS患者制定个性化治疗策略和预后预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验