Dodo Yakubu, Arif Kiran, Alyami Mana, Ali Mujahid, Najeh Taoufik, Gamil Yaser
Architectural Engineering Department, College of Engineering, Najran University, Najran, Kingdom of Saudi Arabia.
Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, 47040, Pakistan.
Sci Rep. 2024 Feb 26;14(1):4598. doi: 10.1038/s41598-024-54513-y.
Geo-polymer concrete has a significant influence on the environmental condition and thus its use in the civil industry leads to a decrease in carbon dioxide (CO) emission. However, problems lie with its mixed design and casting in the field. This study utilizes supervised artificial-based machine learning algorithms (MLAs) to anticipate the mechanical characteristic of fly ash/slag-based geopolymer concrete (FASBGPC) by utilizing AdaBoost and Bagging on MLPNN to make an ensemble model with 156 data points. The data consist of GGBS (kg/m), Alkaline activator (kg/m), Fly ash (kg/m), SP dosage (kg/m), NaOH Molarity, Aggregate (kg/m), Temperature (°C) and compressive strength as output parameter. Python programming is utilized in Anaconda Navigator using Spyder version 5.0 to predict the mechanical response. Statistical measures and validation of data are done by splitting the dataset into 80/20 percent and K-Fold CV is employed to check the accurateness of the model by using MAE, RMSE, and R. Statistical analysis relies on errors, and tests against external indicators help determine how well models function in terms of robustness. The most important factor in compressive strength measurements is examined using permutation characteristics. The result reveals that ANN with AdaBoost is outclassed by giving maximum enhancement with R = 0.914 and shows the least error with statistical and external validations. Shapley analysis shows that GGBS, NaOH Molarity, and temperature are the most influential parameter that has significant content in making FASBGPC. Thus, ensemble methods are suitable for constructing prediction models because of their strong and reliable performance. Furthermore, the graphical user interface (GUI) is generated through the process of training a model that forecasts the desired outcome values when the corresponding inputs are provided. It streamlines the process and provides a useful tool for applying the model's abilities in the field of civil engineering.
地质聚合物混凝土对环境状况有重大影响,因此其在民用工业中的应用可减少二氧化碳(CO)排放。然而,其配合比设计和现场浇筑存在问题。本研究利用基于人工的监督式机器学习算法(MLA),通过在多层感知器神经网络(MLPNN)上使用AdaBoost和Bagging来预测基于粉煤灰/矿渣的地质聚合物混凝土(FASBGPC)的力学特性,从而构建一个包含156个数据点的集成模型。数据包括粒化高炉矿渣(kg/m³)、碱性激发剂(kg/m³)、粉煤灰(kg/m³)、减水剂用量(kg/m³)、氢氧化钠摩尔浓度、骨料(kg/m³)、温度(°C)以及作为输出参数的抗压强度。在Anaconda Navigator中使用Spyder 5.0版本的Python编程来预测力学响应。通过将数据集按80/20%划分来进行数据的统计测量和验证,并采用K折交叉验证(K-Fold CV),通过平均绝对误差(MAE)、均方根误差(RMSE)和相关系数(R)来检验模型的准确性。统计分析依赖于误差,针对外部指标的测试有助于确定模型在稳健性方面的运行情况。使用排列特征来研究抗压强度测量中最重要的因素。结果表明,带有AdaBoost的人工神经网络(ANN)表现出色,相关系数R = 0.914,提升最大,并且在统计和外部验证中显示出最小的误差。夏普利分析表明,粒化高炉矿渣、氢氧化钠摩尔浓度和温度是对FASBGPC性能有显著影响的最重要参数。因此,集成方法因其强大且可靠的性能而适合构建预测模型。此外,通过训练一个模型的过程生成图形用户界面(GUI),该模型在提供相应输入时可预测所需的结果值。它简化了流程,并为在土木工程领域应用模型的能力提供了一个有用的工具。