Suppr超能文献

基于深度学习的 Tl-201 心肌灌注 SPECT 衰减校正模型的临床可行性。

Clinical Feasibility of Deep Learning-Based Attenuation Correction Models for Tl-201 Myocardial Perfusion SPECT.

机构信息

From the Department of Biomedical Systems Informatics, Yonsei University, Seoul.

Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, South Korea.

出版信息

Clin Nucl Med. 2024 May 1;49(5):397-403. doi: 10.1097/RLU.0000000000005129. Epub 2024 Feb 26.

Abstract

PURPOSE

We aimed to develop deep learning (DL)-based attenuation correction models for Tl-201 myocardial perfusion SPECT (MPS) images and evaluate their clinical feasibility.

PATIENTS AND METHODS

We conducted a retrospective study of patients with suspected or known coronary artery disease. We proposed a DL-based image-to-image translation technique to transform non-attenuation-corrected images into CT-based attenuation-corrected (CT AC ) images. The model was trained using a modified U-Net with structural similarity index (SSIM) loss and mean squared error (MSE) loss and compared with other models. Segment-wise analysis using a polar map and visual assessment for the generated attenuation-corrected (GEN AC ) images were also performed to evaluate clinical feasibility.

RESULTS

This study comprised 657 men and 328 women (age, 65 ± 11 years). Among the various models, the modified U-Net achieved the highest performance with an average mean absolute error of 0.003, an SSIM of 0.990, and a peak signal-to-noise ratio of 33.658. The performance of the model was not different between the stress and rest datasets. In the segment-wise analysis, the myocardial perfusion of the inferior wall was significantly higher in GEN AC images than in the non-attenuation-corrected images in both the rest and stress test sets ( P < 0.05). In the visual assessment of patients with diaphragmatic attenuation, scores of 4 (similar to CT AC images) or 5 (indistinguishable from CT AC images) were assigned to most GEN AC images (65/68).

CONCLUSIONS

Our clinically feasible DL-based attenuation correction models can replace the CT-based method in Tl-201 MPS, and it would be useful in case SPECT/CT is unavailable for MPS.

摘要

目的

我们旨在开发基于深度学习(DL)的 Tl-201 心肌灌注 SPECT(MPS)图像衰减校正模型,并评估其临床可行性。

患者与方法

我们对疑似或已知冠心病患者进行了回顾性研究。我们提出了一种基于 DL 的图像到图像转换技术,将未经衰减校正的图像转换为基于 CT 的衰减校正(CT AC)图像。该模型使用经过修改的 U-Net 进行训练,采用结构相似性指数(SSIM)损失和均方误差(MSE)损失,并与其他模型进行比较。还使用极地图进行分段分析,并对生成的衰减校正(GEN AC)图像进行视觉评估,以评估临床可行性。

结果

本研究包括 657 名男性和 328 名女性(年龄 65±11 岁)。在各种模型中,经过修改的 U-Net 表现最佳,平均平均绝对误差为 0.003,SSIM 为 0.990,峰值信噪比为 33.658。该模型在应激和休息数据集之间的性能没有差异。在分段分析中,在休息和应激测试集中,GEN AC 图像的下壁心肌灌注明显高于未经衰减校正的图像(P<0.05)。在对膈肌衰减患者的视觉评估中,大多数 GEN AC 图像的评分(4 分或 5 分)与 CT AC 图像相似(65/68)。

结论

我们开发的基于临床可行的 DL 的衰减校正模型可以替代 Tl-201 MPS 中的 CT 基方法,并且在 SPECT/CT 无法用于 MPS 的情况下将非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验