Suppr超能文献

丁酸钠通过抑制 RELA-HDAC8 复合物恢复 PRKN 表达来改善高糖抑制的神经元线粒体自噬。

Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex.

机构信息

Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.

出版信息

Autophagy. 2024 Jul;20(7):1505-1522. doi: 10.1080/15548627.2024.2323785. Epub 2024 Mar 6.

Abstract

Damaged mitochondria accumulation in diabetes is one of the main features that contribute to increased incidence of cognitive impairment by inducing apoptosis. Butyrate is a major metabolite produced by microbiota that has neuroprotective effects by regulating mitochondrial function. However, detailed mechanisms underlying how butyrate can regulate neuronal mitophagy remain unclear. Here, we examined the regulatory effects of sodium butyrate (NaB) on high glucose-induced mitophagy dysregulation, neuronal apoptosis, and cognitive impairment and its underlying mechanisms in human-induced pluripotent stem cell-derived neurons, SH-SY5Ys, and streptozotocin (STZ)-induced diabetic mice. In our results, diabetic mice showed gut-microbiota dysbiosis, especially a decreased number of butyrate-producing bacteria and reduced NaB plasma concentration. NaB ameliorated high glucose-induced neuronal mitochondrial dysfunction by recovering PRKN/Parkin-mediated mitophagy. High glucose-induced reactive oxygen species (ROS) and -inhibited PRKAA/AMPKα stimulated the RELA/p65-HDAC8 complex, which downregulated PRKN protein expression by binding to the promoter region. NaB restored PRKN expression by blocking RELA nuclear translocation and directly inhibiting HDAC8 in the nucleus. In addition, HDAC8 overexpression inhibited the positive effect of NaB on high glucose-induced mitophagy dysfunction and neuronal apoptosis. Oral administration of NaB improved cognitive impairment in diabetic mice by restoring mitophagy in the hippocampus. Taken together, NaB ameliorates neuronal mitophagy through PRKN restoration by inhibiting RELA-HDAC8 complexes, suggesting that NaB is an important substance for protecting neuronal apoptosis in diabetes-associated cognitive impairment.

摘要

糖尿病中线粒体损伤的积累是导致认知功能障碍发生率增加的主要特征之一,它通过诱导细胞凋亡来实现。丁酸盐是微生物群产生的主要代谢物,通过调节线粒体功能具有神经保护作用。然而,丁酸盐如何调节神经元细胞自噬的详细机制尚不清楚。在这里,我们研究了丁酸钠(NaB)对高糖诱导的线粒体自噬失调、神经元细胞凋亡和认知障碍的调节作用及其在人诱导多能干细胞源性神经元(SH-SY5Y)和链脲佐菌素(STZ)诱导的糖尿病小鼠中的潜在机制。在我们的研究结果中,糖尿病小鼠表现出肠道微生物群失调,特别是产丁酸盐细菌的数量减少和血浆中 NaB 浓度降低。NaB 通过恢复 PRKN/Parkin 介导的自噬来改善高糖诱导的神经元线粒体功能障碍。高糖诱导的活性氧(ROS)和抑制的 PRKAA/AMPKα 刺激 RELA/p65-HDAC8 复合物,通过与启动子区域结合来下调 PRKN 蛋白表达。NaB 通过阻断 RELA 核转位和直接抑制核内的 HDAC8 来恢复 PRKN 表达。此外,HDAC8 的过表达抑制了 NaB 对高糖诱导的线粒体自噬功能障碍和神经元细胞凋亡的正向作用。口服 NaB 通过恢复海马体中的自噬来改善糖尿病小鼠的认知障碍。总之,NaB 通过抑制 RELA-HDAC8 复合物来改善神经元细胞自噬,提示 NaB 是保护糖尿病相关认知障碍中神经元细胞凋亡的重要物质。

相似文献

6
PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.
Autophagy. 2019 Mar;15(3):510-526. doi: 10.1080/15548627.2018.1532259. Epub 2018 Oct 13.
7
Sodium Butyrate Ameliorates Atopic Dermatitis-Induced Inflammation by Inhibiting HDAC3-Mediated STAT1 and NF-κB Pathway.
Inflammation. 2024 Jun;47(3):989-1001. doi: 10.1007/s10753-023-01955-7. Epub 2023 Dec 30.
9
MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation.
Autophagy. 2025 Jan;21(1):80-101. doi: 10.1080/15548627.2024.2392415. Epub 2024 Sep 4.

引用本文的文献

3
Nanoparticle-mediated sodium butyrate delivery for repairing hypoxic-ischemic brain injury in premature infants.
Mater Today Bio. 2025 Mar 14;32:101665. doi: 10.1016/j.mtbio.2025.101665. eCollection 2025 Jun.
4
Analysis and Validation of Mitophagy-Related Genes in Diabetic Foot Ulcers.
J Inflamm Res. 2025 Mar 25;18:4367-4379. doi: 10.2147/JIR.S504001. eCollection 2025.
5
The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation.
Front Immunol. 2025 Feb 7;16:1519925. doi: 10.3389/fimmu.2025.1519925. eCollection 2025.
9
The Role of the Intestinal Flora and Its Derivatives in Neurocognitive Disorders: A Narrative Review from Surgical Perspective.
Mol Neurobiol. 2025 Feb;62(2):1404-1414. doi: 10.1007/s12035-024-04322-1. Epub 2024 Jul 10.

本文引用的文献

1
Ferroptosis of Microglia in Aging Human White Matter Injury.
Ann Neurol. 2023 Dec;94(6):1048-1066. doi: 10.1002/ana.26770. Epub 2023 Sep 14.
2
TRIM16-mediated lysophagy suppresses high-glucose-accumulated neuronal Aβ.
Autophagy. 2023 Oct;19(10):2752-2768. doi: 10.1080/15548627.2023.2229659. Epub 2023 Jul 4.
4
Hallmarks of neurodegenerative diseases.
Cell. 2023 Feb 16;186(4):693-714. doi: 10.1016/j.cell.2022.12.032.
5
Variation of butyrate production in the gut microbiome in type 2 diabetes patients.
Int Microbiol. 2023 Aug;26(3):601-610. doi: 10.1007/s10123-023-00324-6. Epub 2023 Feb 13.
6
Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy.
EMBO Mol Med. 2023 Mar 8;15(3):e16225. doi: 10.15252/emmm.202216225. Epub 2023 Jan 3.
9
Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis.
Transl Neurodegener. 2022 Nov 14;11(1):49. doi: 10.1186/s40035-022-00323-z.
10
Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes.
Nat Commun. 2022 Oct 26;13(1):6356. doi: 10.1038/s41467-022-33656-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验