Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise, Singapore, Singapore.
J Med Internet Res. 2024 Feb 27;26:e48168. doi: 10.2196/48168.
Conversational agents (CAs) or chatbots are computer programs that mimic human conversation. They have the potential to improve access to mental health interventions through automated, scalable, and personalized delivery of psychotherapeutic content. However, digital health interventions, including those delivered by CAs, often have high attrition rates. Identifying the factors associated with attrition is critical to improving future clinical trials.
This review aims to estimate the overall and differential rates of attrition in CA-delivered mental health interventions (CA interventions), evaluate the impact of study design and intervention-related aspects on attrition, and describe study design features aimed at reducing or mitigating study attrition.
We searched PubMed, Embase (Ovid), PsycINFO (Ovid), Cochrane Central Register of Controlled Trials, and Web of Science, and conducted a gray literature search on Google Scholar in June 2022. We included randomized controlled trials that compared CA interventions against control groups and excluded studies that lasted for 1 session only and used Wizard of Oz interventions. We also assessed the risk of bias in the included studies using the Cochrane Risk of Bias Tool 2.0. Random-effects proportional meta-analysis was applied to calculate the pooled dropout rates in the intervention groups. Random-effects meta-analysis was used to compare the attrition rate in the intervention groups with that in the control groups. We used a narrative review to summarize the findings.
The systematic search retrieved 4566 records from peer-reviewed databases and citation searches, of which 41 (0.90%) randomized controlled trials met the inclusion criteria. The meta-analytic overall attrition rate in the intervention group was 21.84% (95% CI 16.74%-27.36%; I=94%). Short-term studies that lasted ≤8 weeks showed a lower attrition rate (18.05%, 95% CI 9.91%- 27.76%; I=94.6%) than long-term studies that lasted >8 weeks (26.59%, 95% CI 20.09%-33.63%; I=93.89%). Intervention group participants were more likely to attrit than control group participants for short-term (log odds ratio 1.22, 95% CI 0.99-1.50; I=21.89%) and long-term studies (log odds ratio 1.33, 95% CI 1.08-1.65; I=49.43%). Intervention-related characteristics associated with higher attrition include stand-alone CA interventions without human support, not having a symptom tracker feature, no visual representation of the CA, and comparing CA interventions with waitlist controls. No participant-level factor reliably predicted attrition.
Our results indicated that approximately one-fifth of the participants will drop out from CA interventions in short-term studies. High heterogeneities made it difficult to generalize the findings. Our results suggested that future CA interventions should adopt a blended design with human support, use symptom tracking, compare CA intervention groups against active controls rather than waitlist controls, and include a visual representation of the CA to reduce the attrition rate.
PROSPERO International Prospective Register of Systematic Reviews CRD42022341415; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022341415.
对话代理(CA)或聊天机器人是模拟人类对话的计算机程序。它们有可能通过自动化、可扩展和个性化的方式提供心理治疗内容,从而改善获得心理健康干预的机会。然而,数字健康干预措施,包括由 CA 提供的干预措施,通常有很高的脱落率。确定与脱落相关的因素对于改善未来的临床试验至关重要。
本综述旨在估计 CA 提供的心理健康干预(CA 干预)中总的和差异的脱落率,评估研究设计和干预相关方面对脱落的影响,并描述旨在减少或减轻研究脱落的研究设计特征。
我们于 2022 年 6 月在 PubMed、Embase(Ovid)、PsycINFO(Ovid)、Cochrane 对照试验中心注册库和 Web of Science 上进行了搜索,并在 Google Scholar 上进行了灰色文献搜索。我们纳入了比较 CA 干预与对照组的随机对照试验,并排除了仅持续 1 个疗程且使用“巫师奥兹”干预的研究。我们还使用 Cochrane 偏倚风险工具 2.0 评估了纳入研究的偏倚风险。我们应用随机效应比例荟萃分析来计算干预组的脱落率。我们使用随机效应荟萃分析来比较干预组和对照组的脱落率。我们使用叙述性综述来总结研究结果。
系统搜索从同行评审数据库和引文搜索中检索到 4566 条记录,其中 41 项(0.90%)随机对照试验符合纳入标准。干预组的荟萃分析总体脱落率为 21.84%(95%CI 16.74%-27.36%;I=94%)。持续时间≤8 周的短期研究的脱落率较低(18.05%,95%CI 9.91%-27.76%;I=94.6%),而持续时间>8 周的长期研究的脱落率较高(26.59%,95%CI 20.09%-33.63%;I=93.89%)。与对照组相比,短期(对数优势比 1.22,95%CI 0.99-1.50;I=21.89%)和长期研究(对数优势比 1.33,95%CI 1.08-1.65;I=49.43%)中,干预组参与者更有可能脱落。与较高脱落率相关的干预相关特征包括无人工支持的独立 CA 干预、无症状跟踪器功能、无 CA 的视觉表示以及将 CA 干预与候补对照组进行比较。没有可靠的参与者特征可以预测脱落。
我们的结果表明,大约五分之一的参与者将在短期研究中退出 CA 干预。高度的异质性使得难以推广研究结果。我们的研究结果表明,未来的 CA 干预应采用混合设计,提供人工支持,使用症状跟踪,将 CA 干预组与积极对照组而非候补对照组进行比较,并包括 CA 的视觉表示,以降低脱落率。
PROSPERO 国际前瞻性系统评价注册中心 CRD42022341415;https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022341415。