文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

HFSCCD:一种用于超声视频中胎儿标准心脏周期检测的混合神经网络。

HFSCCD: A Hybrid Neural Network for Fetal Standard Cardiac Cycle Detection in Ultrasound Videos.

出版信息

IEEE J Biomed Health Inform. 2024 May;28(5):2943-2954. doi: 10.1109/JBHI.2024.3370507. Epub 2024 May 6.


DOI:10.1109/JBHI.2024.3370507
PMID:38412077
Abstract

In the fetal cardiac ultrasound examination, standard cardiac cycle (SCC) recognition is the essential foundation for diagnosing congenital heart disease. Previous studies have mostly focused on the detection of adult CCs, which may not be applicable to the fetus. In clinical practice, localization of SCCs needs to recognize end-systole (ES) and end-diastole (ED) frames accurately, ensuring that every frame in the cycle is a standard view. Most existing methods are not based on the detection of key anatomical structures, which may not recognize irrelevant views and background frames, results containing non-standard frames, or even it does not work in clinical practice. We propose an end-to-end hybrid neural network based on an object detector to detect SCCs from fetal ultrasound videos efficiently, which consists of 3 modules, namely Anatomical Structure Detection (ASD), Cardiac Cycle Localization (CCL), and Standard Plane Recognition (SPR). Specifically, ASD uses an object detector to identify 9 key anatomical structures, 3 cardiac motion phases, and the corresponding confidence scores from fetal ultrasound videos. On this basis, we propose a joint probability method in the CCL to learn the cardiac motion cycle based on the 3 cardiac motion phases. In SPR, to reduce the impact of structure detection errors on the accuracy of the standard plane recognition, we use XGBoost algorithm to learn the relation knowledge of the detected anatomical structures. We evaluate our method on the test fetal ultrasound video datasets and clinical examination cases and achieve remarkable results. This study may pave the way for clinical practices.

摘要

在胎儿心脏超声检查中,标准心动周期(SCC)识别是诊断先天性心脏病的重要基础。以前的研究大多集中在成人 CC 的检测上,这可能不适用于胎儿。在临床实践中,需要准确识别 SCC 的收缩末期(ES)和舒张末期(ED)帧,以确保周期中的每一帧都是标准视图。大多数现有的方法都不是基于关键解剖结构的检测,这可能无法识别不相关的视图和背景帧,结果包含非标准帧,甚至在临床实践中无法工作。我们提出了一种基于目标检测的端到端混合神经网络,从胎儿超声视频中高效地检测 SCC,它由 3 个模块组成,即解剖结构检测(ASD)、心动周期定位(CCL)和标准平面识别(SPR)。具体来说,ASD 使用目标检测从胎儿超声视频中识别 9 个关键解剖结构、3 个心脏运动阶段以及相应的置信度得分。在此基础上,我们提出了一种联合概率方法在 CCL 中基于 3 个心脏运动阶段学习心脏运动周期。在 SPR 中,为了减少结构检测错误对标准平面识别准确性的影响,我们使用 XGBoost 算法学习检测到的解剖结构的关系知识。我们在测试胎儿超声视频数据集和临床检查病例上评估了我们的方法,取得了显著的结果。本研究可能为临床实践铺平道路。

相似文献

[1]
HFSCCD: A Hybrid Neural Network for Fetal Standard Cardiac Cycle Detection in Ultrasound Videos.

IEEE J Biomed Health Inform. 2024-5

[2]
A YOLOX-Based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in Fetal Ultrasound Images.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[3]
Fetal Congenital Heart Disease Echocardiogram Screening Based on DGACNN: Adversarial One-Class Classification Combined with Video Transfer Learning.

IEEE Trans Med Imaging. 2020-4

[4]
Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer-based Chan-Vese model.

Med Biol Eng Comput. 2019-6-12

[5]
Automating the Human Action of First-Trimester Biometry Measurement from Real-World Freehand Ultrasound.

Ultrasound Med Biol. 2024-6

[6]
Multi-task learning for quality assessment of fetal head ultrasound images.

Med Image Anal. 2019-9-6

[7]
Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart.

Ultrasound Obstet Gynecol. 2013-9

[8]
First-trimester ultrasound detection of fetal heart anomalies: systematic review and meta-analysis.

Ultrasound Obstet Gynecol. 2022-1

[9]
Ultrasound Standard Plane Detection Using a Composite Neural Network Framework.

IEEE Trans Cybern. 2017-3-30

[10]
Why are congenital heart defects being missed?

Ultrasound Obstet Gynecol. 2020-6

引用本文的文献

[1]
Federated learning-based multimodal approach for early detection and personalized care in cardiac disease.

Front Physiol. 2025-4-23

[2]
Automatic segmentation of 15 critical anatomical labels and measurements of cardiac axis and cardiothoracic ratio in fetal four chambers using nnU-NetV2.

BMC Med Inform Decis Mak. 2024-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索