IEEE J Biomed Health Inform. 2024 May;28(5):2943-2954. doi: 10.1109/JBHI.2024.3370507. Epub 2024 May 6.
In the fetal cardiac ultrasound examination, standard cardiac cycle (SCC) recognition is the essential foundation for diagnosing congenital heart disease. Previous studies have mostly focused on the detection of adult CCs, which may not be applicable to the fetus. In clinical practice, localization of SCCs needs to recognize end-systole (ES) and end-diastole (ED) frames accurately, ensuring that every frame in the cycle is a standard view. Most existing methods are not based on the detection of key anatomical structures, which may not recognize irrelevant views and background frames, results containing non-standard frames, or even it does not work in clinical practice. We propose an end-to-end hybrid neural network based on an object detector to detect SCCs from fetal ultrasound videos efficiently, which consists of 3 modules, namely Anatomical Structure Detection (ASD), Cardiac Cycle Localization (CCL), and Standard Plane Recognition (SPR). Specifically, ASD uses an object detector to identify 9 key anatomical structures, 3 cardiac motion phases, and the corresponding confidence scores from fetal ultrasound videos. On this basis, we propose a joint probability method in the CCL to learn the cardiac motion cycle based on the 3 cardiac motion phases. In SPR, to reduce the impact of structure detection errors on the accuracy of the standard plane recognition, we use XGBoost algorithm to learn the relation knowledge of the detected anatomical structures. We evaluate our method on the test fetal ultrasound video datasets and clinical examination cases and achieve remarkable results. This study may pave the way for clinical practices.
在胎儿心脏超声检查中,标准心动周期(SCC)识别是诊断先天性心脏病的重要基础。以前的研究大多集中在成人 CC 的检测上,这可能不适用于胎儿。在临床实践中,需要准确识别 SCC 的收缩末期(ES)和舒张末期(ED)帧,以确保周期中的每一帧都是标准视图。大多数现有的方法都不是基于关键解剖结构的检测,这可能无法识别不相关的视图和背景帧,结果包含非标准帧,甚至在临床实践中无法工作。我们提出了一种基于目标检测的端到端混合神经网络,从胎儿超声视频中高效地检测 SCC,它由 3 个模块组成,即解剖结构检测(ASD)、心动周期定位(CCL)和标准平面识别(SPR)。具体来说,ASD 使用目标检测从胎儿超声视频中识别 9 个关键解剖结构、3 个心脏运动阶段以及相应的置信度得分。在此基础上,我们提出了一种联合概率方法在 CCL 中基于 3 个心脏运动阶段学习心脏运动周期。在 SPR 中,为了减少结构检测错误对标准平面识别准确性的影响,我们使用 XGBoost 算法学习检测到的解剖结构的关系知识。我们在测试胎儿超声视频数据集和临床检查病例上评估了我们的方法,取得了显著的结果。本研究可能为临床实践铺平道路。
IEEE J Biomed Health Inform. 2024-5
IEEE/ACM Trans Comput Biol Bioinform. 2024
Ultrasound Med Biol. 2024-6
Med Image Anal. 2019-9-6
Ultrasound Obstet Gynecol. 2022-1
IEEE Trans Cybern. 2017-3-30
Ultrasound Obstet Gynecol. 2020-6