文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 nnU-NetV2 自动分割胎儿四腔心 15 个关键解剖标签和心轴及心胸比测量值。

Automatic segmentation of 15 critical anatomical labels and measurements of cardiac axis and cardiothoracic ratio in fetal four chambers using nnU-NetV2.

机构信息

Department of Ultrasound, Shenzhen Maternity&Child Healthcare Hospital, Shenzhen, 518028, China.

Department of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.

出版信息

BMC Med Inform Decis Mak. 2024 May 21;24(1):128. doi: 10.1186/s12911-024-02527-x.


DOI:10.1186/s12911-024-02527-x
PMID:38773456
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11106923/
Abstract

BACKGROUND: Accurate segmentation of critical anatomical structures in fetal four-chamber view images is essential for the early detection of congenital heart defects. Current prenatal screening methods rely on manual measurements, which are time-consuming and prone to inter-observer variability. This study develops an AI-based model using the state-of-the-art nnU-NetV2 architecture for automatic segmentation and measurement of key anatomical structures in fetal four-chamber view images. METHODS: A dataset, consisting of 1,083 high-quality fetal four-chamber view images, was annotated with 15 critical anatomical labels and divided into training/validation (867 images) and test (216 images) sets. An AI-based model using the nnU-NetV2 architecture was trained on the annotated images and evaluated using the mean Dice coefficient (mDice) and mean intersection over union (mIoU) metrics. The model's performance in automatically computing the cardiac axis (CAx) and cardiothoracic ratio (CTR) was compared with measurements from sonographers with varying levels of experience. RESULTS: The AI-based model achieved a mDice coefficient of 87.11% and an mIoU of 77.68% for the segmentation of critical anatomical structures. The model's automated CAx and CTR measurements showed strong agreement with those of experienced sonographers, with respective intraclass correlation coefficients (ICCs) of 0.83 and 0.81. Bland-Altman analysis further confirmed the high agreement between the model and experienced sonographers. CONCLUSION: We developed an AI-based model using the nnU-NetV2 architecture for accurate segmentation and automated measurement of critical anatomical structures in fetal four-chamber view images. Our model demonstrated high segmentation accuracy and strong agreement with experienced sonographers in computing clinically relevant parameters. This approach has the potential to improve the efficiency and reliability of prenatal cardiac screening, ultimately contributing to the early detection of congenital heart defects.

摘要

背景:准确分割胎儿四腔心切面图像中的关键解剖结构对于早期发现先天性心脏病至关重要。目前的产前筛查方法依赖于手动测量,既耗时又容易受到观察者间差异的影响。本研究开发了一种基于人工智能的模型,该模型使用最先进的 nnU-NetV2 架构,用于自动分割和测量胎儿四腔心切面图像中的关键解剖结构。

方法:一个包含 1083 高质量胎儿四腔心切面图像的数据集,使用 15 个关键解剖标签进行了注释,并分为训练/验证(867 个图像)和测试(216 个图像)集。使用 nnU-NetV2 架构的人工智能模型在标注图像上进行训练,并使用平均 Dice 系数(mDice)和平均交并比(mIoU)指标进行评估。将模型在自动计算心脏轴(CAx)和心胸比(CTR)方面的性能与不同经验水平的超声医师的测量结果进行了比较。

结果:基于人工智能的模型在分割关键解剖结构方面的平均 Dice 系数为 87.11%,平均交并比为 77.68%。该模型的自动 CAx 和 CTR 测量结果与经验丰富的超声医师的测量结果具有很强的一致性,相应的组内相关系数(ICC)分别为 0.83 和 0.81。Bland-Altman 分析进一步证实了模型与经验丰富的超声医师之间的高度一致性。

结论:我们开发了一种基于人工智能的模型,该模型使用 nnU-NetV2 架构用于准确分割和自动测量胎儿四腔心切面图像中的关键解剖结构。我们的模型在计算临床相关参数方面表现出了很高的分割准确性和与经验丰富的超声医师的高度一致性。这种方法有可能提高产前心脏筛查的效率和可靠性,最终有助于早期发现先天性心脏病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/d83ff702ed9a/12911_2024_2527_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/37fa9afc6acb/12911_2024_2527_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/d370a3b2d3ff/12911_2024_2527_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/32d9fe767c29/12911_2024_2527_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/8f8837847e2b/12911_2024_2527_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/91958c9f09a3/12911_2024_2527_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/4ddc533f89da/12911_2024_2527_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/5168d0895d1d/12911_2024_2527_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/d83ff702ed9a/12911_2024_2527_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/37fa9afc6acb/12911_2024_2527_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/d370a3b2d3ff/12911_2024_2527_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/32d9fe767c29/12911_2024_2527_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/8f8837847e2b/12911_2024_2527_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/91958c9f09a3/12911_2024_2527_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/4ddc533f89da/12911_2024_2527_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/5168d0895d1d/12911_2024_2527_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e7/11106923/d83ff702ed9a/12911_2024_2527_Fig8_HTML.jpg

相似文献

[1]
Automatic segmentation of 15 critical anatomical labels and measurements of cardiac axis and cardiothoracic ratio in fetal four chambers using nnU-NetV2.

BMC Med Inform Decis Mak. 2024-5-21

[2]
DW-Net: A cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography.

Comput Med Imaging Graph. 2020-3

[3]
A YOLOX-Based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in Fetal Ultrasound Images.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[4]
Early fetal ultrasound screening for major congenital heart defects without Doppler.

Eur J Obstet Gynecol Reprod Biol. 2019-2

[5]
The construction and application of an ultrasound and anatomical cross-sectional database of structural malformations of the fetal heart.

Prenat Diagn. 2020-6

[6]
Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection.

Sensors (Basel). 2021-11-30

[7]
MobileUNet-FPN: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber Segmentation in Edge Computing Environments.

IEEE J Biomed Health Inform. 2022-11

[8]
A deep learning framework for identifying and segmenting three vessels in fetal heart ultrasound images.

Biomed Eng Online. 2024-4-2

[9]
Interaction between clinicians and artificial intelligence to detect fetal atrioventricular septal defects on ultrasound: how can we optimize collaborative performance?

Ultrasound Obstet Gynecol. 2024-7

[10]
Utility of fetal cardiac magnetic resonance imaging in assessing the cardiac axis in fetuses with congenital heart disease.

Pediatr Radiol. 2023-5

引用本文的文献

[1]
Automatic Human Embryo Volume Measurement in First Trimester Ultrasound From the Rotterdam Periconception Cohort: Quantitative and Qualitative Evaluation of Artificial Intelligence.

J Med Internet Res. 2025-3-31

本文引用的文献

[1]
A systematic review of machine learning based thyroid tumor characterisation using ultrasonographic images.

J Ultrasound. 2024-6

[2]
HFSCCD: A Hybrid Neural Network for Fetal Standard Cardiac Cycle Detection in Ultrasound Videos.

IEEE J Biomed Health Inform. 2024-5

[3]
MLMSeg: A multi-view learning model for ultrasound thyroid nodule segmentation.

Comput Biol Med. 2024-2

[4]
A knowledge-interpretable multi-task learning framework for automated thyroid nodule diagnosis in ultrasound videos.

Med Image Anal. 2024-1

[5]
TransFSM: Fetal Anatomy Segmentation and Biometric Measurement in Ultrasound Images Using a Hybrid Transformer.

IEEE J Biomed Health Inform. 2023-11-6

[6]
Deep endpoints focusing network under geometric constraints for end-to-end biometric measurement in fetal ultrasound images.

Comput Biol Med. 2023-10

[7]
SAN: Side Adapter Network for Open-Vocabulary Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2023-12

[8]
Artificial intelligence in obstetric ultrasound: A scoping review.

Prenat Diagn. 2023-8

[9]
ISUOG Practice Guidelines (updated): fetal cardiac screening.

Ultrasound Obstet Gynecol. 2023-6

[10]
Guidelines and Recommendations for Performance of the Fetal Echocardiogram: An Update from the American Society of Echocardiography.

J Am Soc Echocardiogr. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索