Amsterdam Business School, University of Amsterdam, Amsterdam, The Netherlands.
Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation BioPhysics, Boston, MA, United States of America.
Phys Med Biol. 2024 Mar 14;69(7). doi: 10.1088/1361-6560/ad2d7e.
This study addresses radiation-induced toxicity (RIT) challenges in radiotherapy (RT) by developing a personalized treatment planning framework. It leverages patient-specific data and dosimetric information to create an optimization model that limits adverse side effects using constraints learned from historical data.The study uses the optimization with constraint learning (OCL) framework, incorporating patient-specific factors into the optimization process. It consists of three steps: optimizing the baseline treatment plan using population-wide dosimetric constraints; training a machine learning (ML) model to estimate the patient's RIT for the baseline plan; and adapting the treatment plan to minimize RIT using ML-learned patient-specific constraints. Various predictive models, including classification trees, ensembles of trees, and neural networks, are applied to predict the probability of grade 2+ radiation pneumonitis (RP2+) for non-small cell lung (NSCLC) cancer patients three months post-RT. The methodology is assessed with four high RP2+ risk NSCLC patients, with the goal of optimizing the dose distribution to constrain the RP2+ outcome below a pre-specified threshold. Conventional and OCL-enhanced plans are compared based on dosimetric parameters and predicted RP2+ risk. Sensitivity analysis on risk thresholds and data uncertainty is performed using a toy NSCLC case.Experiments show the methodology's capacity to directly incorporate all predictive models into RT treatment planning. In the four patients studied, mean lung dose and V20 were reduced by an average of 1.78 Gy and 3.66%, resulting in an average RP2+ risk reduction from 95% to 42%. Notably, this reduction maintains tumor coverage, although in two cases, sparing the lung slightly increased spinal cord max-dose (0.23 and 0.79 Gy).By integrating patient-specific information into learned constraints, the study significantly reduces adverse side effects like RP2+ without compromising target coverage. This unified framework bridges the gap between predicting toxicities and optimizing treatment plans in personalized RT decision-making.
本研究通过开发个性化治疗计划框架来解决放射治疗(RT)中的放射性诱导毒性(RIT)挑战。它利用患者特定的数据和剂量信息创建一个优化模型,该模型使用从历史数据中学习到的约束来限制不良反应。
该研究使用带有约束学习(OCL)框架的优化,将患者特定的因素纳入到优化过程中。它由三个步骤组成:使用人群范围的剂量学约束优化基准治疗计划;训练机器学习(ML)模型来估计患者的基线计划的 RIT;使用 ML 学习到的患者特定约束来调整治疗计划以最小化 RIT。应用了各种预测模型,包括分类树、树的集合和神经网络,来预测非小细胞肺癌(NSCLC)患者在 RT 后三个月发生 2+级放射性肺炎(RP2+)的概率。该方法通过四个高 RP2+风险的 NSCLC 患者进行评估,目标是优化剂量分布,将 RP2+结果约束在预定阈值以下。基于剂量学参数和预测的 RP2+风险,比较了常规和 OCL 增强计划。使用一个玩具 NSCLC 病例进行了风险阈值和数据不确定性的敏感性分析。
实验表明,该方法能够直接将所有预测模型纳入 RT 治疗计划。在研究的四个患者中,平均肺剂量和 V20 分别降低了 1.78Gy 和 3.66%,导致 RP2+风险从 95%降低到 42%。值得注意的是,尽管在两个病例中,稍微增加肺的剂量会略微增加脊髓最大剂量(0.23 和 0.79Gy),但这降低了 RP2+风险,同时保持了肿瘤覆盖。通过将患者特定的信息整合到学习到的约束中,该研究显著降低了放射性肺炎等不良反应,同时又不影响靶区覆盖。该统一框架弥合了预测毒性和优化个性化 RT 决策中的治疗计划之间的差距。