Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation BioPhysics, Boston, MA, United States of America.
University of Texas' MD Anderson Cancer Center, Department of Radiation Oncology, Division of Radiation Oncology, Houston, TX, United States of America.
Phys Med Biol. 2022 Sep 13;67(18). doi: 10.1088/1361-6560/ac88b3.
. Traditional radiotherapy (RT) treatment planning of non-small cell lung cancer (NSCLC) relies on population-wide estimates of organ tolerance to minimize excess toxicity. The goal of this study is to develop a personalized treatment planning based on patient-specific lung radiosensitivity, by combining machine learning and optimization.. Sixty-nine non-small cell lung cancer patients with baseline and mid-treatment [18]F-fluorodeoxyglucose (FDG)-PET images were retrospectively analyzed. A probabilistic Bayesian networks (BN) model was developed to predict the risk of radiation pneumonitis (RP) at three months post-RT using pre- and mid-treatment FDG information. A patient-specific dose modifying factor (DMF), as a surrogate for lung radiosensitivity, was estimated to personalize the normal tissue toxicity probability (NTCP) model. This personalized NTCP was then integrated into a NTCP-based optimization model for RT adaptation, ensuring tumor coverage and respecting patient-specific lung radiosensitivity. The methodology was employed to adapt the treatment planning of fifteen NSCLC patients.. The magnitude of the BN predicted risks corresponded with the RP severity. Average predicted risk for grade 1-4 RP were 0.18, 0.42, 0.63, and 0.76, respectively (< 0.001). The proposed model yielded an average area under the receiver-operating characteristic curve (AUROC) of 0.84, outperforming the AUROCs of LKB-NTCP (0.77), and pre-treatment BN (0.79). Average DMF for the radio-tolerant (RP grade = 1) and radiosensitive (RP grade ≥ 2) groups were 0.8 and 1.63,< 0.01. RT personalization resulted in five dose escalation strategies (average mean tumor dose increase = 6.47 Gy, range = [2.67-17.5]), and ten dose de-escalation (average mean lung dose reduction = 2.98 Gy [0.8-5.4]), corresponding to average NTCP reduction of 15% [4-27].. Personalized FDG-PET-based mid-treatment adaptation of NSCLC RT could significantly lower the RP risk without compromising tumor control. The proposed methodology could help the design of personalized clinical trials for NSCLC patients.
. 传统的非小细胞肺癌(NSCLC)放射治疗(RT)计划依赖于对器官耐受量的人群范围估计,以最大程度地减少过度毒性。本研究的目的是通过结合机器学习和优化,基于患者特定的肺放射敏感性来制定个性化的治疗计划。. 回顾性分析了 69 例基线和中期[18]F-氟脱氧葡萄糖(FDG)-PET 图像的非小细胞肺癌患者。使用治疗前和中期 FDG 信息,开发了一种概率贝叶斯网络(BN)模型来预测 RT 后三个月的放射性肺炎(RP)风险。估计了患者特异性剂量修正因子(DMF),作为肺放射敏感性的替代物,用于个性化正常组织毒性概率(NTCP)模型。然后,将这种个性化的 NTCP 整合到基于 NTCP 的 RT 适应优化模型中,以确保肿瘤覆盖并尊重患者特定的肺放射敏感性。该方法用于调整 15 例 NSCLC 患者的治疗计划。BN 预测的风险大小与 RP 严重程度相对应。1-4 级 RP 的平均预测风险分别为 0.18、0.42、0.63 和 0.76(<0.001)。所提出的模型产生的接收器操作特征曲线(AUROC)平均面积为 0.84,优于 LKB-NTCP(0.77)和治疗前 BN(0.79)的 AUROC。对于放射耐受(RP 等级=1)和放射敏感(RP 等级≥2)组,平均 DMF 分别为 0.8 和 1.63,<0.01。RT 个体化导致了五种剂量递增策略(平均肿瘤平均剂量增加=6.47 Gy,范围=[2.67-17.5])和十种剂量递减策略(平均平均肺剂量减少=2.98 Gy[0.8-5.4]),对应于平均 NTCP 降低 15%[4-27]。. NSCLC RT 的基于个性化 FDG-PET 的中期调整可以显著降低 RP 风险,而不影响肿瘤控制。所提出的方法可以帮助设计非小细胞肺癌患者的个性化临床试验。