Suppr超能文献

结合咖啡香气的质谱分析与深度学习对咖啡产地进行快速分类。

Rapid classification of coffee origin by combining mass spectrometry analysis of coffee aroma with deep learning.

机构信息

Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

出版信息

Food Chem. 2024 Jul 15;446:138811. doi: 10.1016/j.foodchem.2024.138811. Epub 2024 Feb 22.

Abstract

Mislabeling the geographical origin of coffee is a prevalent form of fraud. In this study, a rapid, nondestructive, and high-throughput method combining mass spectrometry (MS) analysis and intelligence algorithms to classify coffee origin was developed. Specifically, volatile compounds in coffee aroma were detected using self-aspiration corona discharge ionization mass spectrometry (SACDI-MS), and the acquired MS data were processed using a customized deep learning algorithm to perform origin authentication automatically. To facilitate high-throughput analysis, an air curtain sampling device was designed and coupled with SACDI-MS to prevent volatile mixing and signal overlap. An accuracy of 99.78% was achieved in the classification of coffee samples from six origins at a throughput of 1 s per sample. The proposed approach may be effective in preventing coffee fraud owing to its straightforward operation, rapidity, and high accuracy and thus benefit consumers.

摘要

错标咖啡的产地是一种普遍的欺诈形式。在这项研究中,开发了一种快速、无损和高通量的方法,结合质谱(MS)分析和智能算法来对咖啡产地进行分类。具体来说,使用自吸电晕放电电离质谱(SACDI-MS)检测咖啡香气中的挥发性化合物,并使用定制的深度学习算法处理获得的 MS 数据,自动进行产地认证。为了便于高通量分析,设计了空气幕采样装置,并与 SACDI-MS 耦合,以防止挥发性物质混合和信号重叠。在 1 秒/样的高通量下,对来自六个产地的咖啡样品的分类准确率达到 99.78%。由于操作简单、快速、准确率高,该方法可能有效地防止咖啡欺诈,从而使消费者受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验