Suppr超能文献

开发和评估列线图和风险分层系统,以预测肝细胞癌患者的总生存率和癌症特异性生存率。

Development and evaluation of nomograms and risk stratification systems to predict the overall survival and cancer-specific survival of patients with hepatocellular carcinoma.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.

Department of the Sixth Infection, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China.

出版信息

Clin Exp Med. 2024 Feb 28;24(1):44. doi: 10.1007/s10238-024-01296-1.

Abstract

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and patients with HCC have a poor prognosis and low survival rates. Establishing a prognostic nomogram is important for predicting the survival of patients with HCC, as it helps to improve the patient's prognosis. This study aimed to develop and evaluate nomograms and risk stratification to predict overall survival (OS) and cancer-specific survival (CSS) in HCC patients. Data from 10,302 patients with initially diagnosed HCC were extracted from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2017. Patients were randomly divided into the training and validation set. Kaplan-Meier survival, LASSO regression, and Cox regression analysis were conducted to select the predictors of OS. Competing risk analysis, LASSO regression, and Cox regression analysis were conducted to select the predictors of CSS. The validation of the nomograms was performed using the concordance index (C-index), the Akaike information criterion (AIC), the Bayesian information criterion (BIC), Net Reclassification Index (NRI), Discrimination Improvement (IDI), the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analyses (DCAs). The results indicated that factors including age, grade, T stage, N stage, M stage, surgery, surgery to lymph node (LN), Alpha-Fetal Protein (AFP), and tumor size were independent predictors of OS, whereas grade, T stage, surgery, AFP, tumor size, and distant lymph node metastasis were independent predictors of CSS. Based on these factors, predictive models were built and virtualized by nomograms. The C-index for predicting 1-, 3-, and 5-year OS were 0.788, 0.792, and 0.790. The C-index for predicting 1-, 3-, and 5-year CSS were 0.803, 0.808, and 0.806. AIC, BIC, NRI, and IDI suggested that nomograms had an excellent predictive performance with no significant overfitting. The calibration curves showed good consistency of OS and CSS between the actual observation and nomograms prediction, and the DCA showed great clinical usefulness of the nomograms. The risk stratification of OS and CSS was built that could perfectly classify HCC patients into three risk groups. Our study developed nomograms and a corresponding risk stratification system predicting the OS and CSS of HCC patients. These tools can assist in patient counseling and guiding treatment decision making.

摘要

肝细胞癌 (HCC) 是最常见的原发性肝癌类型,HCC 患者预后差,生存率低。建立预后列线图对于预测 HCC 患者的生存率非常重要,因为它有助于改善患者的预后。本研究旨在建立并评估列线图和风险分层模型,以预测 HCC 患者的总生存期 (OS) 和癌症特异性生存期 (CSS)。从 2010 年至 2017 年,从监测、流行病学和最终结果 (SEER) 数据库中提取了 10302 例初诊 HCC 患者的数据。患者被随机分为训练集和验证集。采用 Kaplan-Meier 生存分析、LASSO 回归和 Cox 回归分析筛选 OS 的预测因素。采用竞争风险分析、LASSO 回归和 Cox 回归分析筛选 CSS 的预测因素。采用一致性指数 (C-index)、赤池信息量准则 (AIC)、贝叶斯信息准则 (BIC)、净重新分类指数 (NRI)、区分改善指数 (IDI)、受试者工作特征 (ROC) 曲线、校准曲线和决策曲线分析 (DCAs) 验证列线图的准确性。结果表明,年龄、分级、T 分期、N 分期、M 分期、手术、手术至淋巴结 (LN)、甲胎蛋白 (AFP) 和肿瘤大小是 OS 的独立预测因素,而分级、T 分期、手术、AFP、肿瘤大小和远处淋巴结转移是 CSS 的独立预测因素。基于这些因素,构建并通过列线图可视化了预测模型。预测 1、3 和 5 年 OS 的 C 指数分别为 0.788、0.792 和 0.790。预测 1、3 和 5 年 CSS 的 C 指数分别为 0.803、0.808 和 0.806。AIC、BIC、NRI 和 IDI 表明,列线图具有良好的预测性能,且不存在明显的过度拟合。校准曲线显示 OS 和 CSS 的实际观察值与列线图预测值之间具有良好的一致性,DCA 显示列线图具有很好的临床应用价值。建立了 OS 和 CSS 的风险分层,可将 HCC 患者完美地分为三个风险组。本研究建立了预测 HCC 患者 OS 和 CSS 的列线图和风险分层系统。这些工具可以帮助患者咨询和指导治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a4/10899391/755350103692/10238_2024_1296_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验