Suppr超能文献

一种基于 SEER 的预测初诊转移性食管癌患者癌症特异性生存的新型列线图和风险分类系统。

A Novel Nomogram and Risk Classification System Predicting the Cancer-Specific Survival of Patients with Initially Diagnosed Metastatic Esophageal Cancer: A SEER-Based Study.

机构信息

Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.

出版信息

Ann Surg Oncol. 2019 Feb;26(2):321-328. doi: 10.1245/s10434-018-6929-0. Epub 2018 Oct 24.

Abstract

BACKGROUND

Metastatic esophageal cancer (mEC) is the end stage of esophageal cancer. We aimed to construct a predictive model predicting the cancer-specific survival (CSS) of mEC patients.

METHODS

Data from 1917 patients with initially diagnosed mEC were extracted from the Surveillance, Epidemiology, and End Results database between 2010 and 2015. Patients were randomly divided into the training and validation cohorts (7:3). Cox regression was conducted to select the predictors of CSS. The validation of the nomogram was performed using concordance index (C-index), calibration curves, and decision curve analyses (DCAs).

RESULTS

Cancer-specific death occurred in 1559/1917 (81.3%) cases. Multivariate Cox regression indicated that factors including age, sex, grade at diagnosis, number of metastatic organs at diagnosis, pathological type, local treatment, and chemotherapy were independent predictors of CSS. Based on these factors, a predictive model was built and virtualized by nomogram. The C-index of the nomogram was 0.762. The calibration curves showed good consistency of CSS between the actual observation and the nomogram prediction, and the DCA showed great clinical usefulness of the nomogram. A risk classification system was built that could perfectly classify mEC patients into three risk groups. In the total cohort, the median CSS of patients in the low-, intermediate- and high-risk groups was 11.0 months (95% confidence interval [CI] 10.1-11.9), 8.0 months (95% CI 7.3-8.7), and 2.0 months (95% CI 1.8-2.2), respectively.

CONCLUSIONS

We constructed a nomogram and a corresponding risk classification system predicting the CSS of patients with initially diagnosed mEC. These tools can assist in patient counseling and guiding treatment decision making.

摘要

背景

转移性食管癌(mEC)是食管癌的终末期。我们旨在构建一个预测模型,以预测 mEC 患者的癌症特异性生存(CSS)。

方法

从 2010 年至 2015 年,从监测、流行病学和最终结果(SEER)数据库中提取了 1917 例初诊 mEC 患者的数据。患者被随机分为训练和验证队列(7:3)。使用 Cox 回归选择 CSS 的预测因素。通过一致性指数(C-index)、校准曲线和决策曲线分析(DCAs)验证了列线图的验证。

结果

1917 例患者中,1559 例(81.3%)发生了癌症特异性死亡。多变量 Cox 回归表明,年龄、性别、诊断时的分级、诊断时转移器官的数量、病理类型、局部治疗和化疗等因素是 CSS 的独立预测因素。基于这些因素,建立了一个预测模型,并通过列线图进行了可视化。列线图的 C-index 为 0.762。校准曲线显示 CSS 实际观察值与列线图预测值之间具有良好的一致性,而 DCA 显示列线图具有很好的临床实用性。建立了一个风险分类系统,可以将 mEC 患者完美地分为三个风险组。在整个队列中,低、中、高危组患者的中位 CSS 分别为 11.0 个月(95%置信区间[CI] 10.1-11.9)、8.0 个月(95%CI 7.3-8.7)和 2.0 个月(95%CI 1.8-2.2)。

结论

我们构建了一个列线图和一个相应的风险分类系统,用于预测初诊 mEC 患者的 CSS。这些工具可以帮助患者咨询和指导治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验