Suppr超能文献

基于人群的回顾性研究:用于评估宫颈神经内分泌癌患者总生存和癌症特异性生存的竞争风险列线图和风险分类系统。

Competing risk nomogram and risk classification system for evaluating overall and cancer-specific survival in neuroendocrine carcinoma of the cervix: a population-based retrospective study.

机构信息

School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.

Department of Obstetrics and Gynecology, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.

出版信息

J Endocrinol Invest. 2024 Jun;47(6):1545-1557. doi: 10.1007/s40618-023-02261-7. Epub 2024 Jan 3.

Abstract

OBJECTIVE

Neuroendocrine carcinoma of the cervix (NECC) is a rare malignancy with poor clinical prognosis due to limited therapeutic options. This study aimed to establish a risk-stratification score and nomogram models to predict prognosis in NECC patients.

METHODS

Data on individuals diagnosed with NECC between 2000 and 2019 were retrieved from the Surveillance Epidemiology and End Results (SEER) database and then randomly classified into training and validation cohorts (7:3). Univariate and multivariate Cox regression analyses evaluated independent indicators of prognosis. Least absolute shrinkage and selection operator (LASSO) regression analysis further assisted in confirming candidate variables. Based on these factors, cancer-specific survival (CSS) and overall survival (OS) nomograms that predict survival over 1, 3, and 5 years were constructed. The receiver operating characteristic (ROC) curve, the concordance index (C-index), and the calibration curve estimated the precision and discriminability of the competing risk nomogram for both cohorts. Finally, we assessed the clinical value of the nomograms using decision curve analysis (DCA).

RESULTS

Data from 2348 patients were obtained from the SEER database. Age, tumor stage, T stage, N stage, chemotherapy, radiotherapy, and surgery predicted OS. Additionally, histological type was another standalone indicator of CSS prognosis. For predicting CSS, the C-index was 0.751 (95% CI 0.731 ~ 0.770) and 0.740 (95% CI 0.710 ~ 0.770) for the training and validation cohorts, respectively. Furthermore, the C-index in OS prediction was 0.757 (95% CI 0.738 ~ 0.776) and 0.747 (95% CI 0.718 ~ 0.776) for both cohorts. The proposed model had an excellent discriminative ability. Good accuracy and discriminability were also demonstrated using the AUC and calibration curves. Additionally, DCA demonstrated the high clinical potential of the nomograms for CSS and OS prediction. We constructed a corresponding risk classification system using nomogram scores. For the whole cohort, the median CSS times for the low-, moderate-, and high-risk groups were 59.3, 19.5, and 7.4 months, respectively.

CONCLUSION

New competing risk nomograms and a risk classification system were successfully developed to predict the 1-, 3-, and 5-year CSS and OS of NECC patients. The models are internally accurate and reliable and may guide clinicians toward better clinical decisions and the development of personalized treatment plans.

摘要

目的

宫颈神经内分泌癌(NECC)是一种罕见的恶性肿瘤,由于治疗选择有限,临床预后较差。本研究旨在建立风险分层评分和列线图模型,以预测 NECC 患者的预后。

方法

从监测、流行病学和最终结果(SEER)数据库中检索了 2000 年至 2019 年间诊断为 NECC 的个体的数据,并将其随机分为训练和验证队列(7:3)。单因素和多因素 Cox 回归分析评估了预后的独立指标。最小绝对收缩和选择算子(LASSO)回归分析进一步证实了候选变量。基于这些因素,构建了预测 1、3 和 5 年癌症特异性生存(CSS)和总生存(OS)的列线图。受试者工作特征(ROC)曲线、一致性指数(C 指数)和校准曲线估计了两个队列的竞争风险列线图的精度和区分能力。最后,我们使用决策曲线分析(DCA)评估了列线图的临床价值。

结果

从 SEER 数据库中获得了 2348 例患者的数据。年龄、肿瘤分期、T 分期、N 分期、化疗、放疗和手术预测 OS。此外,组织学类型是 CSS 预后的另一个独立指标。对于预测 CSS,训练和验证队列的 C 指数分别为 0.751(95%CI 0.7310.770)和 0.740(95%CI 0.7100.770)。此外,OS 预测中的 C 指数分别为 0.757(95%CI 0.7380.776)和 0.747(95%CI 0.7180.776)。所提出的模型具有出色的区分能力。AUC 和校准曲线也证明了该模型具有良好的准确性和区分能力。此外,DCA 表明,该列线图在 CSS 和 OS 预测方面具有较高的临床应用价值。我们使用列线图评分构建了相应的风险分类系统。对于整个队列,低、中、高危组的中位 CSS 时间分别为 59.3、19.5 和 7.4 个月。

结论

成功开发了新的竞争风险列线图和风险分类系统,以预测 NECC 患者的 1、3 和 5 年 CSS 和 OS。该模型具有内部准确性和可靠性,可指导临床医生做出更好的临床决策,并制定个性化的治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1733/11143030/89fa25d81753/40618_2023_2261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验