Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
Diabetologia. 2024 May;67(5):837-849. doi: 10.1007/s00125-024-06108-5. Epub 2024 Feb 27.
AIMS/HYPOTHESIS: The aim of this study was to describe the metabolome in diabetic kidney disease (DKD) and its association with incident CVD in type 2 diabetes, and identify prognostic biomarkers.
From a prospective cohort of individuals with type 2 diabetes, baseline sera (N=1991) were quantified for 170 metabolites using NMR spectroscopy with median 5.2 years of follow-up. Associations of chronic kidney disease (CKD, eGFR<60 ml/min per 1.73 m) or severely increased albuminuria with each metabolite were examined using linear regression, adjusted for confounders and multiplicity. Associations between DKD (CKD or severely increased albuminuria)-related metabolites and incident CVD were examined using Cox regressions. Metabolomic biomarkers were identified and assessed for CVD prediction and replicated in two independent cohorts.
At false discovery rate (FDR)<0.05, 156 metabolites were associated with DKD (151 for CKD and 128 for severely increased albuminuria), including apolipoprotein B-containing lipoproteins, HDL, fatty acids, phenylalanine, tyrosine, albumin and glycoprotein acetyls. Over 5.2 years of follow-up, 75 metabolites were associated with incident CVD at FDR<0.05. A model comprising age, sex and three metabolites (albumin, triglycerides in large HDL and phospholipids in small LDL) performed comparably to conventional risk factors (C statistic 0.765 vs 0.762, p=0.893) and adding the three metabolites further improved CVD prediction (C statistic from 0.762 to 0.797, p=0.014) and improved discrimination and reclassification. The 3-metabolite score was validated in independent Chinese and Dutch cohorts.
CONCLUSIONS/INTERPRETATION: Altered metabolomic signatures in DKD are associated with incident CVD and improve CVD risk stratification.
目的/假设:本研究旨在描述糖尿病肾病(DKD)中的代谢组,并探讨其与 2 型糖尿病患者发生心血管疾病(CVD)的关系,以及确定预后生物标志物。
本研究纳入了前瞻性队列的 2 型糖尿病患者,共 1991 例患者的基线血清采用 NMR 光谱法进行了 170 种代谢物的定量分析,中位随访时间为 5.2 年。使用线性回归分析,在调整混杂因素和多重性后,评估慢性肾脏病(CKD,eGFR<60ml/min/1.73m2)或严重白蛋白尿与每种代谢物的相关性。使用 Cox 回归分析,评估与 DKD(CKD 或严重白蛋白尿)相关的代谢物与新发 CVD 之间的相关性。确定代谢组学生物标志物,并评估其对 CVD 的预测价值,然后在两个独立队列中进行验证。
在 FDR<0.05 时,有 156 种代谢物与 DKD 相关(151 种与 CKD 相关,128 种与严重白蛋白尿相关),包括载脂蛋白 B 含脂蛋白、HDL、脂肪酸、苯丙氨酸、酪氨酸、白蛋白和糖蛋白乙酰基。在 5.2 年的随访期间,有 75 种代谢物与新发 CVD 相关(FDR<0.05)。一个包含年龄、性别和三种代谢物(白蛋白、大 HDL 中的甘油三酯和小 LDL 中的磷脂)的模型与传统危险因素的表现相当(C 统计量分别为 0.765 和 0.762,p=0.893),并且添加这三种代谢物可以进一步改善 CVD 预测(C 统计量从 0.762 提高到 0.797,p=0.014),并且提高了区分度和重新分类能力。该 3 代谢物评分在独立的中国和荷兰队列中得到了验证。
结论/解释:DKD 中代谢组特征的改变与新发 CVD 相关,并可改善 CVD 风险分层。