Suppr超能文献

临床预测中项目得分或综合得分的选择。

On the Selection of Item Scores or Composite Scores for Clinical Prediction.

机构信息

Department of Psychology, University of Notre Dame.

出版信息

Multivariate Behav Res. 2024 May-Jun;59(3):566-583. doi: 10.1080/00273171.2023.2292598. Epub 2024 Feb 27.

Abstract

Recent shifts to prioritize prediction, rather than explanation, in psychological science have increased applications of predictive modeling methods. However, composite predictors, such as sum scores, are still commonly used in practice. The motivations behind composite test scores are largely intertwined with reducing the influence of measurement error in answering explanatory questions. But this may be detrimental for predictive aims. The present paper examines the impact of utilizing composite or item-level predictors in linear regression. A mathematical examination of the bias-variance decomposition of prediction error in the presence of measurement error is provided. It is shown that prediction bias, which may be exacerbated by composite scoring, drives prediction error for linear regression. This may be particularly salient when composite scores are comprised of heterogeneous items such as in clinical scales where items correspond to symptoms. With sufficiently large training samples, the increased prediction variance associated with item scores becomes negligible even when composite scores are sufficient. Practical implications of predictor scoring are examined in an empirical example predicting suicidal ideation from various depression scales. Results show that item scores can markedly improve prediction particularly for symptom-based scales. Cross-validation methods can be used to empirically justify predictor scoring decisions.

摘要

近年来,心理学科学优先进行预测而非解释的趋势增加了预测建模方法的应用。然而,综合预测因子,如总和分数,在实践中仍然被广泛使用。综合测试分数的动机在很大程度上与减少回答解释性问题时测量误差的影响交织在一起。但这可能对预测目标不利。本文研究了在线性回归中使用综合或项目水平预测因子的影响。提供了在存在测量误差的情况下预测误差的偏差-方差分解的数学检验。结果表明,预测偏差可能会因综合评分而加剧,从而驱动线性回归的预测误差。当综合分数由不同的项目组成时,例如在对应于症状的临床量表中,这可能特别明显。随着训练样本足够大,即使综合分数足够,与项目分数相关的增加的预测方差也变得可以忽略不计。在一个从各种抑郁量表预测自杀意念的实证示例中,研究了预测因子评分的实际意义。结果表明,项目分数可以显著提高预测效果,特别是对于基于症状的量表。可以使用交叉验证方法来经验性地证明预测因子评分决策的合理性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验