Wang Haifeng, Wang Fan, Zhang Shengjia, Shen Jing, Zhu Xiaolin, Cui Yuanyuan, Li Pengfei, Lin Chao, Li Xiaopeng, Xiao Qi, Luo Wei
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Adv Mater. 2024 Jun;36(24):e2400764. doi: 10.1002/adma.202400764. Epub 2024 Mar 8.
Supported metal catalysts have been exploited in various applications. Among them, cocatalyst supported on photocatalyst is essential for activation of photocatalysis. However, cocatalyst decoration in a controllable fashion to promote intrinsic activity remains challenging. Herein, a versatile method is developed for cocatalyst synthesis using an ice-templating (ICT) strategy, resulting in size control from single-atom (SA), and atomic clusters (AC) to nanoparticles (NP). Importantly, the coordination numbers (CN) of decorated AC cocatalysts are highly controllable, and this ICT method applies to various metals and photocatalytic substrates. Taking narrow-band gap Ga-doped LaTiCuAgOS (LTCA) photocatalyst as an example, supported Ru AC/LTCA catalysts with regulable Ru CNs have been prepared, delivering significantly enhanced activities compared to Ru SA and Ru NPs supported on LTCA. Specifically, Ru AC/LTCA with an average CN of Ru─Ru bond measured to be ≈3.4 exhibits excellent photocatalytic H evolution rate (578 µmol h) under visible light irradiation. Density functional theory calculation reveals that the modeled Ru atomic cluster cocatalyst possesses favorable electronic properties and available active sites for the H evolution reaction.
负载型金属催化剂已被应用于各种领域。其中,负载在光催化剂上的助催化剂对于光催化的活化至关重要。然而,以可控方式修饰助催化剂以提高其本征活性仍然具有挑战性。在此,开发了一种通用的方法,采用冰模板(ICT)策略合成助催化剂,实现了从单原子(SA)、原子簇(AC)到纳米颗粒(NP)的尺寸控制。重要的是,修饰的AC助催化剂的配位数(CN)高度可控,并且这种ICT方法适用于各种金属和光催化底物。以窄带隙Ga掺杂的LaTiCuAgOS(LTCA)光催化剂为例,制备了具有可调节Ru CNs的负载型Ru AC/LTCA催化剂,与负载在LTCA上的Ru SA和Ru NPs相比,其活性显著提高。具体而言,平均Ru─Ru键CN约为3.4的Ru AC/LTCA在可见光照射下表现出优异的光催化析氢速率(578 μmol h)。密度泛函理论计算表明,模拟的Ru原子簇助催化剂具有良好的电子性质和用于析氢反应的可用活性位点。