Suppr超能文献

MAGIC-DR:一种用于急性髓细胞白血病可测量残留病分析的可解释机器学习指导方法。

MAGIC-DR: An interpretable machine-learning guided approach for acute myeloid leukemia measurable residual disease analysis.

机构信息

Division of Hematopathology, Vancouver General Hospital, Vancouver, British Columbia, Canada.

Department of pathology and laboratory medicine, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Cytometry B Clin Cytom. 2024 Jul;106(4):239-251. doi: 10.1002/cyto.b.22168. Epub 2024 Feb 28.

Abstract

Multiparameter flow cytometry is widely used for acute myeloid leukemia minimal residual disease testing (AML MRD) but is time consuming and demands substantial expertise. Machine learning offers potential advancements in accuracy and efficiency, but has yet to be widely adopted for this application. To explore this, we trained single cell XGBoost classifiers from 98 diagnostic AML cell populations and 30 MRD negative samples. Performance was assessed by cross-validation. Predictions were integrated with UMAP as a heatmap parameter for an augmented/interactive AML MRD analysis framework, which was benchmarked against traditional MRD analysis for 25 test cases. The results showed that XGBoost achieved a median AUC of 0.97, effectively distinguishing diverse AML cell populations from normal cells. When integrated with UMAP, the classifiers highlighted MRD populations against the background of normal events. Our pipeline, MAGIC-DR, incorporated classifier predictions and UMAP into flow cytometry standard (FCS) files. This enabled a human-in-the-loop machine learning guided MRD workflow. Validation against conventional analysis for 25 MRD samples showed 100% concordance in myeloid blast detection, with MAGIC-DR also identifying several immature monocytic populations not readily found by conventional analysis. In conclusion, Integrating a supervised classifier with unsupervised dimension reduction offers a robust method for AML MRD analysis that can be seamlessly integrated into conventional workflows. Our approach can support and augment human analysis by highlighting abnormal populations that can be gated on for quantification and further assessment. This has the potential to speed up MRD analysis, and potentially improve detection sensitivity for certain AML immunophenotypes.

摘要

多参数流式细胞术广泛应用于急性髓系白血病微小残留病(AML MRD)检测,但耗时且需要大量专业知识。机器学习在准确性和效率方面具有潜在的优势,但尚未广泛应用于该领域。为了探索这一点,我们从 98 个诊断性 AML 细胞群和 30 个 MRD 阴性样本中训练了单细胞 XGBoost 分类器。通过交叉验证评估性能。预测结果与 UMAP 集成,作为 AML MRD 分析框架的热图参数,该框架与 25 个测试案例的传统 MRD 分析进行了基准测试。结果表明,XGBoost 实现了中位数 AUC 为 0.97,有效地将不同的 AML 细胞群与正常细胞区分开来。当与 UMAP 集成时,分类器突出了 MRD 群体在正常事件背景下的存在。我们的管道 MAGIC-DR 将分类器预测和 UMAP 合并到流式细胞术标准(FCS)文件中。这使得机器学习引导的 MRD 工作流程具有人机交互能力。针对 25 个 MRD 样本的传统分析验证显示,髓样前体细胞的检测具有 100%的一致性,MAGIC-DR 还识别出了一些传统分析不易发现的不成熟单核细胞群体。总之,将有监督分类器与无监督降维技术相结合,为 AML MRD 分析提供了一种稳健的方法,可以无缝集成到常规工作流程中。我们的方法可以通过突出可以用于定量和进一步评估的异常群体来支持和增强人工分析。这有可能加快 MRD 分析速度,并有可能提高某些 AML 免疫表型的检测灵敏度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验