Mocking Tim R, Kelder Angèle, Reuvekamp Tom, Ngai Lok Lam, Rutten Philip, Gradowska Patrycja, van de Loosdrecht Arjan A, Cloos Jacqueline, Bachas Costa
Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
Commun Med (Lond). 2024 Dec 19;4(1):271. doi: 10.1038/s43856-024-00700-x.
The proportion of residual leukemic blasts after chemotherapy assessed by multiparameter flow cytometry, is an important prognostic factor for the risk of relapse and overall survival in acute myeloid leukemia (AML). This measurable residual disease (MRD) is used in clinical trials to stratify patients for more or less intensive consolidation therapy. However, an objective and reproducible analysis method to assess MRD status from flow cytometry data is lacking, yet is highly anticipated for broader implementation of MRD testing.
We propose a computational pipeline based on Gaussian mixture modeling that allows a fully automated assessment of MRD status while remaining completely interpretable for clinical diagnostic experts. Our pipeline requires limited training data, which makes it easily transferable to other medical centers and cytometry platforms.
We identify all healthy and leukemic immature myeloid cells in with high concordance (Spearman's Rho = 0.974) and classification performance (median F-score = 0.861) compared to manual analysis. Using control samples (n = 18), we calculate a computational MRD percentage with high concordance to expert gating (Spearman's rho = 0.823) and predict MRD status in a cohort of 35 AML follow-up measurements with high accuracy (97%).
We demonstrate that our pipeline provides a powerful tool for fast (~3 s) and objective automated MRD assessment in AML.
通过多参数流式细胞术评估化疗后残留白血病原始细胞的比例,是急性髓系白血病(AML)复发风险和总生存期的重要预后因素。这种可测量的残留疾病(MRD)用于临床试验,对患者进行分层,以确定接受强度不同的巩固治疗。然而,目前缺乏一种客观且可重复的分析方法来从流式细胞术数据评估MRD状态,而这对于更广泛地开展MRD检测至关重要。
我们提出了一种基于高斯混合模型的计算流程,可实现对MRD状态的全自动评估,同时临床诊断专家仍可完全理解其原理。我们的流程所需的训练数据有限,这使其易于转移到其他医疗中心和细胞术平台。
与人工分析相比,我们能高度一致地识别所有健康和白血病未成熟髓系细胞(斯皮尔曼相关系数=0.974),且分类性能良好(中位F值=0.861)。使用对照样本(n=18),我们计算出的计算MRD百分比与专家设门高度一致(斯皮尔曼相关系数=0.823),并在35例AML随访测量队列中高精度(97%)预测MRD状态。
我们证明,我们的流程为AML中快速(约3秒)且客观的自动MRD评估提供了一个强大工具。