Suppr超能文献

为丛枝菌根真菌非共生菌丝生长动态的细胞水平提供了新的见解。

provides new insights into arbuscular mycorrhizal fungal asymbiotic hyphal growth dynamics at the cellular level.

机构信息

Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.

Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

出版信息

Lab Chip. 2024 Mar 26;24(7):1930-1946. doi: 10.1039/d3lc00859b.

Abstract

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (, physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the - to visualise the foraging behaviour of germinating and spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the is expected to open many future frontiers for AMF research.

摘要

丛枝菌根真菌 (AMF) 与大多数陆生植物形成共生关系,并提供广泛的基于土壤的生态系统服务。由于它们在黑暗环境中以突出的地下生活方式存在,周围环绕着土壤颗粒,因此,对于环境(物理)线索对孢子萌发、菌丝形态发生和吻合/菌丝愈合机制的影响,仍有许多需要了解。为了填补 AMF 知识的现有空白,我们开发了一种新的微流控平台 - ,以可视化萌发孢子和非共生菌丝的觅食行为,并使非共生菌丝与物理障碍物接触。结合延时显微镜,我们可以在细胞水平和实时观察真菌。该平台使我们能够获得具有前所未有的视觉清晰度的电影,从而确定 AMF 非共生菌丝的各种探索策略。我们见证了尖端到尖端和尖端到侧面的菌丝吻合形成。吻合涉及以“停止-前进”方式定向菌丝生长,为吻合前信号和决策提供了直观证据。值得注意的是,我们还揭示了一种迄今为止尚未描述的可逆细胞质回缩,包括回缩时形成多达 8 个隔膜,作为高度动态空间导航的一部分,可能是为了优化觅食效率而进化的。我们的发现表明 AMF 如何利用涉及可逆细胞质回缩、分支和方向变化的复杂空间搜索机制。反过来,该平台预计将为 AMF 研究开辟许多未来的前沿领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cba/10964749/9d392d8f268d/d3lc00859b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验