Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). Ensenada, BC, México.
Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). Ensenada, BC, México; Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato. Irapuato, Gto, México.
Fungal Genet Biol. 2022 Apr;159:103672. doi: 10.1016/j.fgb.2022.103672. Epub 2022 Feb 9.
We investigated hyphae regeneration in Trichoderma atroviride and Neurospora crassa, with particular focus on determining the role of the actin cytoskeleton after mechanical injury. Filamentous actin (F-actin) dynamics was observed by live-cell confocal microscopy in both T. atroviride and N. crassa strains expressing Lifeact-GFP. In growing hyphae of both fungi, F-actin localized in three different structural forms: patches, cables and actomyosin rings. Most patches were conspicuously arranged in a collar in the hyphal subapex. A strong F-actin signal, likely actin filaments, colocalized with the core of the Spitzenkörper. Filaments and cables of F-actin were observed along the cortex throughout hyphae. Following mechanical damage at the margin of growing mycelia of T. atroviride and N. crassa, the severed hyphae lost their cytoplasmic contents, but plugging of the septal pore by a Woronin body occured, and the rest of the hyphal tube remained whole. In both fungi, patches of F-actin began accumulating next to the plugged septum. Regeneration was attained by the emergence of a new hyphal tube as an extension of the plugged septum wall. The septum wall was gradually remodeled into the apical wall of the emerging hypha. Whereas in T. atroviride the re-initiation of polarized growth took ∼ 1 h, in N. crassa, actin patch accumulation began almost immediately, and new growing hyphae were observed ∼ 30 min after injury. By confocal microscopy, we found that chitin synthase 1 (CHS-1), a microvesicle (chitosome) component, accumulated next to the plugged septum in regenerating hyphae of N. crassa. We concluded that the actin cytoskeleton plays a key role in hyphal regeneration by supporting membrane remodeling, helping to facilitate transport of vesicles responsible for new wall growth and organization of the new tip-growth apparatus.
我们研究了深绿木霉和粗糙脉孢菌的菌丝再生,特别关注机械损伤后肌动蛋白细胞骨架的作用。通过活细胞共聚焦显微镜观察到在表达 Lifeact-GFP 的 T. atroviride 和 N. crassa 菌株中丝状肌动蛋白 (F-actin) 的动态。在两种真菌的生长菌丝中,F-actin 定位于三种不同的结构形式:斑点、电缆和肌球蛋白环。大多数斑点在菌丝亚顶端的领圈中排列明显。一个强烈的 F-actin 信号,可能是肌动蛋白丝,与 Spitzenkörper 的核心共定位。在菌丝中可以观察到 F-actin 的细丝和电缆沿着皮层延伸。在深绿木霉和粗糙脉孢菌生长菌丝的边缘受到机械损伤后,切断的菌丝失去了细胞质内容物,但隔膜孔被 Woronin 体堵塞,菌丝管的其余部分保持完整。在这两种真菌中,F-actin 的斑点开始在堵塞的隔膜旁边积累。再生是通过作为堵塞隔膜壁延伸的新菌丝管的出现来实现的。隔膜壁逐渐重塑为新出现的菌丝的顶端壁。虽然在 T. atroviride 中,极性生长的重新开始需要约 1 小时,但在 N. crassa 中,肌动蛋白斑点的积累几乎立即开始,并且在受伤后约 30 分钟观察到新的生长菌丝。通过共聚焦显微镜,我们发现几丁质合酶 1 (CHS-1),一种微囊泡(几丁质体)成分,在 N. crassa 再生菌丝中积累在堵塞的隔膜旁边。我们得出结论,肌动蛋白细胞骨架通过支持膜重塑,有助于促进负责新壁生长的囊泡的运输和新尖端生长装置的组织,在菌丝再生中发挥关键作用。